Искусственный интеллект в компьютерном зрении
В докладе будут рассмотрены следующие вопросы:
- Сверточные нейронные сети – типы слоев, функции активации, обучение [1-7].
- Обзор современных моделей сверточных нейронных сетей (LeNet-5, AlexNet, VGG-16, Inception-v1, ResNet, R-CNN, YOLO, U-Net, CapsNet, GAN, VAE) и их применений (классификация и локализация объектов, сегментация изображений).
- Современные тренды развития нейросетевых методов, в частности, направления экстенсивного и интенсивного развития.
- Проблемы безопасности и уязвимости нейросетей: отравление обучающих данных [8][11], встраивание триггеров [9][10], атака уклонением, состязательные примеры [12-15].
- Подходы к повышению вычислительной эффективности нейросетей: прореживание сети [17], дистилляция знаний [18-20], квантизация сетей [21-22], малобитные вычисления, морфологические нейросети.
- Аппаратные и программные направления реализации сверточных нейронных сетей.
- Современные проблемы нейросетей.
Слайды доклада
Видео доклада.
Литература:
- E. Shelhamer, J. Long and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640-651, 1 April 2017, doi: 10.1109/TPAMI.2016.2572683.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 6 (June 2017), 84–90. DOI:https://doi.org/10.1145/3065386
- Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37 (ICML'15). JMLR.org, 448–456.
- He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15, 1026–1034, IEEE Computer Society, USA (2015). DOI: 10.1109/ICCV.2015.123.
- D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential linear units (elus),” in 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings , (2016).
- Ramachandran, P., Zoph, B., & Le, Q.V. (2018). Searching for Activation Functions. ArXiv, abs/1710.05941.
- Alexander V. Gayer, Alexander V. Sheshkus, Dmitri P. Nikolaev, Vladimir V. Arlazarov, "Improvement of U-Net architecture for image binarization with activation functions replacement," Proc. SPIE 11605, Thirteenth International Conference on Machine Vision, 116050Y (4 January 2021); https://doi.org/10.1117/12.2587027
- Jagielski, Matthew & Oprea, Alina & Biggio, Battista & Liu, Chang & Nita-Rotaru, Cristina & Li, Bo. (2018). Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning. 19-35. 10.1109/SP.2018.00057.
- T. Gu, K. Liu, B. Dolan-Gavitt and S. Garg, "BadNets: Evaluating Backdooring Attacks on Deep Neural Networks," in IEEE Access, vol. 7, pp. 47230-47244, 2019, doi: 10.1109/ACCESS.2019.2909068.
- T. Gu, K. Liu, B. Dolan-Gavitt and S. Garg, "BadNets: Evaluating Backdooring Attacks on Deep Neural Networks," in IEEE Access, vol. 7, pp. 47230-47244, 2019, doi: 10.1109/ACCESS.2019.2909068.
- Tahmasebian, Farnaz & Xiong, Li & Sotoodeh, Mani & Sunderam, Vaidy. (2020). Crowdsourcing Under Data Poisoning Attacks: A Comparative Study. 10.1007/978-3-030-49669-2_18.
- I.J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples", 2015, ICLR.
- I.J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples", 2015, ICLR.
- S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, "Universal adversarial perturbations", 2017, CVPR.
- X. Xu, J. Chen, J. Xiao, L. Gao, F. Shen, and H.T. Shen, "What machines see is not what they get: fooling scene text recognition models with adversarial text images", 2020, CVPR.
- C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, "Intriguing properties of neural networks", 2014.
- Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, Ji Liu: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks. NeurIPS 2019: 6379-6391
- Hinton, G., Vinyals, O. & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531
- Asami, Taichi; Masumura, Ryo; Yamaguchi, Yoshikazu; Masataki, Hirokazu; Aono, Yushi (2017). Domain adaptation of DNN acoustic models using knowledge distillation. IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 5185–5189.
- Cui, Jia; Kingsbury, Brian; Ramabhadran, Bhuvana; Saon, George; Sercu, Tom; Audhkhasi, Kartik; Sethy, Abhinav; Nussbaum-Thom, Markus; Rosenberg, Andrew (2017). Knowledge distillation across ensembles of multilingual models for low-resource languages. IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 4825–4829.
- X. Chen, X. Hu, H. Zhou and N. Xu, "FxpNet: Training a deep convolutional neural network in fixed-point representation," 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 2017, pp. 2494-2501, doi: 10.1109/IJCNN.2017.7966159.
- Qin, H., Gong, R., Liu, X., Bai, X., Song, J., & Sebe, N. (2020). Binary Neural Networks: A Survey. ArXiv, abs/2004.03333.
|