
MapReduce Fundamentals: Demo
Семинар курса «Управление разно-структурированными большими данными»

http://synthesis.ipi.ac.ru/synthesis/student/BigData/seminar-hadoop/hadoop2014

alexey.vovchenko@gmail.com

Начало работы
Для доступа к серверу IBM BigInsights необходимо выполнить инструкции из:

«server_access.pdf». Если у Вас нет этого файла, необходимо написать мне на почту.

Подготовка среды разработки
1. Скачать и установить Java 7 (если не установлен, на Java 8 работать не будет)

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html

2. Скачать Eclipse версии 4.2

https://www.eclipse.org/downloads/packages/release/juno/sr2

3. Скачать инструменты разработки IBM BigInsights

http://83.149.245.126:8080/updatesite/repository

4. Запускаем Eclipse версии 4.2

http://synthesis.ipi.ac.ru/synthesis/student/BigData/seminar-hadoop/hadoop2014
mailto:alexey.vovchenko@gmail.com
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://www.eclipse.org/downloads/packages/release/juno/sr2
http://83.149.245.126:8080/updatesite/repository

5. Указываем папку где будут хранится наши проекты

6. Открываем диалог установки дополнений: Help  Install New Software…

7. Нажимаем кнопку добавить (Add…) В появившемся окне выбираем для

установки архив, содержащий BigInsights Eclipse Tools (BigInsightsEclipseTools.zip)

8. Выбираемся для установки IBM InfoSphere BigInsights и нажимаем Next

9. Устанавливаем выбранный плагин, соглашаясь со всеми предложениями

мастера по установке и всеми предупреждениями.

10. После установки перезагружаем Eclipse

11. В открывшимся окне нажимаем «Create a BigInsights server connection»

12. Соглашаемся изменить перспективу

13. Вводим URL сервера (например http://1.1.1.1:8080), имя сервера, логин и пароль

Создаем собственное MapReduce приложение по подсчету числа слов в

тексте
1. Создаем проект File  New  BigInsights Project

2. После того как проект создан, выделяем проект и нажимаем File  New  Java

MapReduce Program

3. Заполняем параметры для Mapper класса

Package org.ipiran.hadoop.sample
Name TestMap

Type of input keys java.lang.Object

Type of Input values org.apache.hadoop.io.Text

Type of output keys org.apache.hadoop.io.Text

Type of output values org.apache.hadoop.io.IntWritable

4. Заполняем параметры для Redcuer класса

Name TestReduce
Type of output keys org.apache.hadoop.io.Text

Type of output values org.apache.hadoop.io.IntWritable

5. Заполняем параметры для Main класса

Package org.ipiran.hadoop.sample

Name TestMapReduce
6. В файле TestMapReduce.java исправляем две строки

// TODO: Update the input path for the location of the inputs of the map-reduce…

FileInputFormat.addInputPath(job, new Path("[input path]"));

// TODO: Update the output path for the output directory of the map-reduce job.

FileOutputFormat.setOutputPath(job, new Path("[output path]"));
На

// TODO: Update the input path for the location of the inputs of the map-reduce…

FileInputFormat.addInputPath(job, new Path(programArgs[0]));

// TODO: Update the output path for the output directory of the map-reduce job.

FileOutputFormat.setOutputPath(job, new Path(programArgs[1]));
7. Пишем код для Mapper класса

package org.ipiran.hadoop.sample;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class TestMap extends Mapper<Object, Text, Text, IntWritable> {

 private final static IntWritable ONE = new IntWritable(1);

 @Override

 public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException {

 StringTokenizer tokens = new StringTokenizer(value.toString());

 while (tokens.hasMoreTokens()) {

 Text word = new Text();

 word.set(tokens.nextToken());

 context.write(word, ONE);

 }

 }

}
8. Пишем код для Reducer класса

package org.ipiran.hadoop.sample;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class TestReduce extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context context)

 throws IOException, InterruptedException {

 IntWritable result = new IntWritable();

 int sum = 0;

 for (IntWritable value: values) {

 sum += value.get();

 }

 result.set(sum);

 context.write(key, result);

 }

}
9. Открываем файл TestMapReduce.java и выбираем из меню: Run  Run as  Java

MapReduce

10. Заполняем параметры конфигурации Job Name и аргументы (путь к входным

данным и путь для результата). Важно! Вместо <Family_Name> нужно

подставить любой текст, например свою фамилию. Это нужно для того, чтобы

имена разных студентов не пересекались. Это же имя нужно использовать в

пункте 15 и 16.

Job name Test_MapReduce_<Family_Name>

Job arguments <Family_Name>/hadoop_lab/texts <Family_Name>/mr_out1

11. На закладке Jar Settings заполняем имя jar файла и отмечаем опцию «Rebuild the

Jar file on each run»

12. Нажимаем Run

13. В консоли отображается информация о запущенном задании

14. Зайдя на страницу Hadoop Map/Reduce Administration

http://83.149.245.126:50030/ , можно проверить статус собственного

приложения

15. Содержимое папки с результатом можно посмотреть командой:

hadoop fs -ls <Family_Name>/mr_out1

16. Сам результат можно посмотреть командой:

hadoop fs -cat <Family_Name>/mr_out1/*00

http://83.149.245.126:50030/

