
Constructing of Mappings of Heterogeneous
Information Models into the Canonical Models

of Integrated Information Systems

Leonid Kalinichenko and Sergey Stupnikov

Institute of Informatics Problems, Russian Academy of Science
{leonidk, ssa}@synth.ipi.ac.ru

Abstract. The paper proposes an approach for semi-automatic con-
struction of mappings of information models of heterogeneous informa-
tion resources (such as databases, services, processes, ontologies) into
the unifying, canonical models of the integrated interoperable informa-
tion systems. The approach proposed is based on verifiable methods and
tools of information model mapping preserving information and opera-
tions and synthesis of extensible canonical information models. An ar-
chitecture of the Information Model Unifier that has been developed for
supporting the methods is briefly described and illustrated by an exam-
ple of mapping of a specific information model into the canonical one.
A short overview of existing database schema mapping approaches and
tools as well as their comparison with the approach developed in our
project is provided.

1 Introduction

The paper1 is devoted to analysis, transformation and unification of information
models for design and development of integrated and interoperable information
systems (I-systems for short).

The current period of IT development is characterized by an explosive process
of information models creation. This development takes place in frame of specific
distributed infrastructures (such as OMG architectures, model driven architec-
tures (MDA), semantic Web architectures, services-oriented architectures, digital
library architectures, architectures of the information grid), as well as in the stan-
dards of concrete information models — data models (such as ODMG 2000, SQL
2003, UML, XML and RDF stacks), workflow models (e.g. Staffware, COSA, In-
Concert, Eastman, FLOWer, Domino, Meteor, Mobile, MQSeries, Forte, Verve,
Vis. WF, Changeng, IFlow, SAP/R3), process service composition languages
(XPDL, BPEL4WS, BPML, XLANG, WSFL, WSCI), semantic models (includ-
ing ontological models and models of metadata), etc. This process is accompa-
nied by another trend — the accumulation of based on such models information
1 This research has been done under the support of the RFBR (projects 06-07-08072-

ofi-a, 06-07-89188-a, 08-07-00157-a) and the Program of the Department of Nan-
otechnologies and Information Technologies of RAS entitled as Basic principles of
information technologies and systems (project 1-10).



resources, the number of which grows exponentially. This growth causes the ac-
celerating need for interoperable use (integration) of components and services
represented in heterogeneous models in various applications, as well as their
reuse and composition implementing new interoperable information systems [1].
The indicated trends are contradictory: the more variety of used models we meet
in various resources, the more complex become problems of their integration and
composition. Generally resources are heterogeneous (represented in various mod-
els) so the problems of I-systems development require to unify these models in
the frame of some unifying information model called canonical. This semantic
unification of various models specifications in the canonical model demands spe-
cial methods and tools that do not exist in practice of I-systems development.
So the experts have to rely on intuitive techniques of identification of required
resources with given properties and transform information models manually ne-
glecting semantics of used models and justification of transformations. Thus
satisfactory results are achieved only for the simplest models.

Unification of heterogeneous specifications requires primarily a technique of
matching the specifications of various resources. The matching have to answer
whether it is possible to use a specification of existing resource instead of an
I-system specification fragment while implementing of the I-system. For that it
is sufficient to prove that specifications considered are in refinement relation.
It is said that specification A refines specification D , if it is possible to use A
instead of D so that the user of D does not notice this substitution. Methods
and tools of proving that a specification of some resource is refined by a specifi-
cation of other resource (based on the model-theoretic notations and supporting
tools) constitutes foundations of methods of unifying (canonical) information
models development for I-systems. The canonical information model is used as
an Esperanto for the uniform representation of semantics of various information
models used in resources of I-systems.

The main principle of the canonical model synthesis for an I-system is the ex-
tensibility of the canonical model kernel in heterogeneous environment, including
various models used for the representation of resources of the I-system. A kernel
of the canonical model is fixed. For each specific information model M (called
source) of the environment an extension of the kernel is defined so that this
extension together with the kernel is refined by M . Such refining transformation
of models should be provably correct. The canonical model for the environment
is synthesized as the union of extensions, constructed for all models M of the
environment. Also preserving of operations and information of a source model
while mapping it into the canonical one is required. This could be reached under
the condition that the mappings of the models are commutative [2].

Over a long period of time the authors have been developing the methods
of the canonical models synthesis for the wide range of real information mod-
els: structured, object, service, process including their arbitrary combinations
[3][2][4][5]. During that full specifications of models (languages) including both
information structures (data types) and behavior (operations, functions and pro-
cesses) were considered.



With regard to explosive extension of information model diversity it seems
impossible to operate manually with such “Tower of Babel” of information mod-
els using created methods of mapping of resource specifications into I-systems
specifications and methods of I-systems canonical models synthesis applying the
refinement theory. That is why the creation of Unifying Information Models
Constructor (Model Unifier in short) aimed at partial automation of methods
of the canonical models synthesis for the I-systems development is important.
The Unifier allows to provably reduce a set of heterogeneous source information
models to the canonical unifying representation and implements strategically
important stage of I-systems development.

Though the results of the work considered can be applied generally to var-
ious I-systems, the specific pragmatic purpose of this particular work is to de-
velop information model mapping approach for the heterogeneous information
resource integration in a specific subject mediator middleware [1]. Due to that,
the subject mediator specification information model (the SYNTHESIS language
[6]) has been chosen as the canonical model kernel. The SYNTHESIS language
distinguishing features include: hybrid semistructured and object oriented data
model and includes facilities for definitions of frames, abstract data types, classes
and metaclasses, facilities for definition of functions, assertions and processes,
logical formulae facilities applied for description of constraints, queries, pre- and
postconditions of functions, assertions and conditions related to processes. For
extension of the canonical model kernel we apply metaclasses, metaframes, pa-
rameterized constructions including assertions and generic data types. Compre-
hensive facilities of the kernel provide for an ability to construct refining mapping
of various kinds of information models into the canonical model kernel chosen.
The Unifier is considered as a constituent part of the subject mediator middle-
ware [1].

The paper is structured as follows. In section 2 the architecture of tools
for unifying information models development is briefly described. In section 3
an example of mapping of OWL (Web Ontology Language) into the canonical
model is presented. The main stages of the mapping construction are illustrated:
formalization of OWL syntax and semantics, integration of concepts of OWL and
the canonical model, creation of the canonical model extension, construction of
translator of OWL into extended canonical model, verification of refinement of
extended canonical model by OWL. In section 4 the related works are considered
and their comparison with the proposed approach is presented. In conclusion the
contribution of the work is summarized.

2 Architecture of Tools for Unifying Information Models
Development

The aim of Model Unifier is to unify a set of information models (called source
models) used interoperably in some I-system. A source model R is said to be
unified if it is mapped into the canonical model C . This means a creation of
such extension E of the canonical model kernel (note that such extension can



be empty) and such mapping M of a source model into extended canonical one
that the source model refines the extended canonical one. Model refinement of
C by R means that for any admissible specification r represented in R its image
M (r) in C under the mapping M is refined by the specification r . Process of
model mapping includes a possibility of proving that arbitrary specification r
represented in R refines its image M (r). Verification of model refinement is
realized over a set of source model specification samples.

Hence the following languages and formal methods are required to support
the information model mapping:

– a kernel of the canonical information model;
– formal methods allowing to describe information model syntax as well as

semantic mappings (translators) of one model to another;
– formal methods supporting verification of refinement reached by the map-

ping.

As a kernel of the canonical information model the SYNTHESIS language
[6] is considered in this paper. The language is intended for canonical informa-
tion modeling and mediator definition for problem solving in application-driven
distributed heterogeneous information environment.

For the formal description of model syntax and translators the metacompila-
tion languages SDF (Syntax Definition Formalism) and ASF (Algebraic Specifi-
cation Formalism) are used. For the languages a tool support — Meta-Environment
[7] — is provided.

The AMN (Abstract Machine Notation) language [8] based on the first order
predicate logic and set theory is used for model’s semantics formalization and
refinement verification. AMN is supported by technology and tools for proving
of refinement (B-technology) [9].

Mapping of the source model R realized by expert with a support of Model
Unifier is divided into the following stages (syntax and semantics of the canonical
model kernel are supposed to be already defined):

1. formalization of the model R syntax and semantics;
2. definition of reference schemas of the model R and the canonical information

model(if the latter has not yet been defined);
3. integration of reference schemas of the model R and the canonical informa-

tion model;
4. creation of required extension E of the canonical model C ;
5. construction of translator of the model R into extended canonical model;
6. verification of refinement of extended canonical model by model R.

Reference schema of information model is an abstract description containing
concepts related to constructions of the model and significant associations among
these concepts. Both concepts and associations may be annotated by verbal
definitions (looking like entries in explanatory dictionary).

Note that the stage of model refinement verification is labor-intensive and
technically complicated so it may be optionally applied when required.

Unifier consists of the following main components (groups of components):



– Meta-Environment (used for the formal description and correctness checking
of model syntax and translators);

– B-Toolkit (supporting AMN and tools for proving of specification refine-
ment) [9];

– metainformation repository;
– model manager.

Meta-Environment and B-Toolkit are independent products. Metainforma-
tion repository is an object-relational database and is used for the implemen-
tation of model registry and as specification storage. Model registry contains
registration cards of models, canonical model extensions, specification samples.
All the information produced during mapping of models (including information
produced during interaction of expert with Meta-Environment and B-Toolkit)
is stored in the registration cards.

Model manager provides a graphical interface allowing an expert to connect
to concrete metainformation repository; to search for, view and register infor-
mation models and extensions of the canonical model; to call specific compo-
nents for generating templates, editing, loading into repository and integration
of reference schemas, generating templates for translators of source models into
the canonical one, translation of source models specifications into AMN or into
canonical specifications, translation of canonical specifications into AMN.

3 An Example of Mapping of a Source Information
Model into the Canonical One

In this section an example of mapping of OWL (Web Ontology Language, [10]) —
a semantic markup language for publishing and sharing ontologies on the World
Wide Web — into the canonical model is presented. Only a fragment of the
language is considered.

3.1 OWL Syntax Formalization

Syntax and semantics of OWL is described in [11]. Note that the document
describes not XML-syntax but abstract syntax independent of any XML rep-
resentation. Syntax is represented in a version of extended Backus–Naur form.
The rules look as follows:

axiom ::= ... |

’ObjectProperty(’ propertyID

[ ’Functional’ | ’Transitive’ ]

{ ’domain(’ classID ’)’ } { ’range(’ classID ’)’ } ’)’

Here the symbol ::= separates a head and a body of a rule, vertical line (|)
means alternative, optional parts of a rule are enclosed by brackets [ ], repeating
parts are enclosed by braces {}.

The first stage of model mapping is a transformation of the source syntax
into formal SDF-syntax:



module unifier/owl/OWL-Syntax

sorts Axiom ObjectPropertyAxiom ...

context-free syntax

ObjectPropertyAxiom -> Axiom

"ObjectProperty" "(" OwlID PropertyKind?

ObjectPropertyDomain* ObjectPropertyRange* ")"

-> ObjectPropertyAxiom

As illustrated by the example the formal syntax of OWL forms the SDF-
module OWL-Syntax including the section of sorts and the section of context-
free syntax (consisting of rules). A rule in SDF is separated by the symbol ->, a
head of the rule is located on the right of the separator, a body is located on the
left of the separator. Optional parts of the rule are marked by question mark ?,
repeating parts – by the symbol *.

3.2 Formalization of OWL Semantics in AMN

Formalization of semantics means a construction of ASF-translator mapping
OWL specifications into AMN-specifications. In this section the main principles
of mapping of OWL into AMN are illustrated by a small subset of wine ontology2:

Class(Wine

restriction(hasSugar cardinality(1)))

Class(DessertWine Wine

restriction(hasSugar allValuesFrom(oneOf(OffDry Sweet))))

ObjectProperty(hasSugar domain(Wine) range(WineSugar))

EnumeratedClass(WineSugar Sweet OffDry Dry)

The main class of ontology is Wine, class DessertWine is a subclass of Wine.
Wine is characterized by a sugar content property hasSugar. Sugar content of
dessert wine have to be sweet or off-dry only.

An image under mapping of this ontology into AMN is the specification
Wines:

REFINEMENT Wines
SETS Ind ; WineSugar = {Sweet ,OffDry ,Dry}
VARIABLES Wine,DessertWine, hasSugar
INVARIANT

Wine ∈ POW (Ind)DessertWine ∈ POW (Ind) ∧ DessertWine ⊆ Wine ∧
hasSugar ∈ Wine ↔ WineSugar ∧
∀wine.(wine ∈ Wine ⇒ card (hasSugar [{wine}]) = 1) ∧
ran (DessertWine C hasSugar) = {OffDry ,Sweet}

OPERATIONS
set hasSugar(ind , val) =
2 Full example of wine ontology is presented in OWL Web Ontology Language

Guide, W3C Proposed Recommendation, http://www.w3.org/TR/2003/PR-owl-
guide-20031215/wine.rdf.



PRE
ind ∈ Wine ∧ val ∈ WineSugar ∧
ind ∈ DessertWine ⇒ val ∈ {OffDry ,Sweet}

THEN
hasSugar(ind) := val

END
include Wine(ind) = . . .
include DessertWine(ind) = . . .
END

A set of individuals of the ontology is represented in AMN by the set Ind .
Enumerated classes (WineSugar for instance) are represented by separate sets.
Classes (Wine for instance) are represented by variables typed in invariant as
subsets of Ind . Object properties (hasSugar for instance) are represented by
variables typed as relations between set representing domains and ranges of
properties. Various restrictions over classes and properties (value restrictions,
cardinality restrictions, class equivalence axioms, etc.) are represented by the
conjunctive parts of the invariant. Every class is represented also by an operation
adding a new instance to the class. Every object property is represented also by
an operation modifying the property value of some individual. In the example
the body of only one operation (related to the property hasSugar) is considered.
The operation modifies the value of the property hasSugar of the individual
ind to the value val if and only if the precondition of the operation holds. The
precondition guarantees preservation of the invariant after the execution of the
operation.

To save space, the details of ASF-translator of OWL into AMN are omitted
here. Some details concerning general structure of ASF-translators are illustrated
in subsection 3.5.

3.3 Definition and Integration of the Reference Schemas of OWL
and the Canonical model

In this section the integration of reference schemas of OWL and the canonical
model is illustrated by a small example (fig. 1).

To save space and make reference schemas (especially associations between
the elements of schemas) more readable they are represented here as UML class
diagram.

On the top of the figure the UML-diagram of types, attributes and associa-
tions of OWL reference schema is shown. Two kinds of associations are presented:
generalization – specialization relation (for instance, type Restriction is a sub-
type of type Description) and associations of various cardinalities (for instance,
class axiom ClassAxiom can be associated with several descriptions Description).

On the bottom of the figure the types of the canonical model reference schema
are shown.

The definition of the reference schemas starts with the automatic genera-
tion of reference schema templates on the base of the SDF-syntax of the models



Fig. 1. Integration of the reference schemas of OWL and the canonical model

(for instance, types Axiom, ObjectPropertyAxiom, ObjectPropertyDomain, Ob-
jectPropertyRange, their attributes and associations are created in accordance
with SDF-syntax rules shown in section 3.1). After that an expert completes the
template using reference schema editor (types, attributes and associations may
be added, deleted or modified). Types, attributes and associations constituting
reference schemas may be also annotated by verbal definitions created by an
expert on the base of model descriptions (such as [11] or [6]). To save space, the
annotations are omitted in the example.

The aim of the integration of the reference schemas is to identify the rele-
vant constructions of source and canonical models. For this identification verbal
annotations are used. The establishing is done automatically with an expert
interaction.

The list of correspondences between OWL and the canonical model construc-
tions for the subsets of the models shown on the figure 1 is presented in the table
1. The correspondences are shown as dotted arrows on the figure.

The correspondences presented in the table are one-to-one, but methods of
construction of translators illustrated in subsection 3.5 allows them to be many-
to-many. This adds not methodological but technical difficulties.

3.4 Creation of the Canonical Model Extension

During the integration of OWL and canonical model reference schemas it ap-
peared that attribute kind of type ObjectPropertyAxiom (defining a kind of an
object property — transitive, functional etc.) and type ObjectPropertyKind can
not be put into correspondence to any construct of the canonical model kernel.



Table 1. Correspondences between OWL and the canonical model constructions

OWL construction Canonical model construction

OwlID Synthesis-Id

ClassAxiom Abstract-Type
ClassAxiom.name Abstract-Type.name
ClassAxiom.descriptions Abstract-Type.attributes

Description Attribute-Specification
Restriction Attribute-Specification
Restriction.onProperty Attribute-Specification.name

ObjectPropertyAxiom Association-Metaclass
ObjectPropertyAxiom.name Association-Metaclass.name
ObjectPropertyAxiom.domains Association-Metaclass.domain
ObjectPropertyAxiom.ranges Association-Metaclass.range

At the same time the concept of object property (ObjectPropertyAxiom) of
OWL corresponds to the concept of association metaclass (Association-Metaclass)
of the canonical model. It was decided to extend the canonical model kernel by
new association metaclasses — Transitive, Functional, etc. Consider the specifi-
cation of Transitive metaclass in SYNTHESIS as an example:

{ Transitive;

in: association, metaclass;

instance_section: {

domain: type; range: type;

transitivity: { in: predicate, invariant;

{{ all a/this.domain.inst, b/this.domain.inst, c/this.domain.inst(

b/this.range.inst & in([a,b], this) & in([b,c], this) ->

in([a,c], this)) }}

} } }

Association transitivity is expressed by the invariant transitivity stating the
following. Let a, b, c be instances of some type T . If a is associated with b
according to association assoc and b is associated with c according to assoc
then a is associated with c according to assoc.

Mapped into AMN this semantics is expressed by the following invariant:

∀ a, b, c (a ∈ ext T ∧ b ∈ ext T ∧ c ∈ ext T ∧
a ∈ assoc(b) ∧ b ∈ assoc(c) ⇒ a ∈ assoc(c))

Generally, creation of an extension means definition of its SDF-syntax, AMN-
semantics and reference schema. After that the integration of reference schemas
of source and extended canonical model is refined: correspondences between
constructions of source model and extension are established and fixed by an
expert.

In our example the list of correspondences between OWL and canonical model
constructions is extended by the correspondence between attribute kind of type



ObjectPropertyAxiom of OWL reference schema and association superclass of
type Association-Metaclass of the canonical model reference schema. The cor-
respondence means that the kind of OWL object property is represented in
the canonical model by superclass relation between association metaclass rep-
resenting object property and an association metaclass of the canonical model
extension (for instance, Transitive).

3.5 Construction of Translator of OWL into Extended Canonical
Model

Input data of this stage are a list of correspondences between constructions of
source and canonical models, SDF-syntax and verbal semantics of source and
canonical models.

The following elements of ASF-translator are generated automatically (actu-
ally a template of the translator is generated to be completed by an expert):

– translator name – unifier/owl2synthesis/owl-translator;
– list of imported modules:

imports unifier/owl/OWL-Syntax

imports unifier/synthesis/Synthesis-Syntax

– list of variables, e.g.:

"ObjectPropertyAxiom"[0-9\’]* -> ObjectPropertyAxiom

"Attribute-Specification*"[0-9\’]* -> Attribute-Specification*

The definitions mean that variables of the respective sorts may be used
in rules of translation (for instance, variable ObjectPropertyAxiom2 of sort
ObjectPropertyAxiom).

– list of translation function signatures, e.g.:

t-Module-Def(Ontology) -> Module-Def

The function t-Module-Def here transforms an OWL ontology into module of
the canonical model. The signature is generated according to correspondence
of elements Ontology and Module-Def.

– list of translation rule templates, e.g.:

[Module-Def]

Synthesis-Id := t-Module-Name(OwlID),

Type-Specification* := t-Type-Specification-List(Directive*),

Class-Declarator* := t-Class-Declarator-List( Directive* )

====>

t-Module-Def( Ontology( OwlID Directive*) ) =

{ Synthesis-Id; in: module;

type: Type-Specification*;

class_specification: Class-Declarator*; }



The rule describes the function t-Module-Def. The rule is generated according
to the analysis of the element t-Module-Def, its attributes and associations
(module name corresponds to OWL ontology name, type specifications and
class declarators correspond to directives). The rule uses recursive function
calls for transformations of directive list into type and class lists.

Lists of imported modules, variables, translation function signatures, trans-
lation rules are completed (extended, modified) by an expert.

According to the ASF-definition the translator program code (C language)
is generated automatically by means of Meta-Environment tools. The translator
obtained is used for mapping of source model specifications into the canonical
model specifications. One of the primary aims of the translator creation is the use
of the translator for I-system development. Translator is used to map a schema
of resource specified in a source model into a schema specified in the canonical
model.

3.6 Verification of Refinement of Extended Canonical Model by
OWL

In this section a verification of mapping of OWL into the canonical model is
illustrated by an example of OWL schema (wine ontology described in section
3.2). OWL specification and its AMN semantics have been already considered.
Mapping of the ontology into the canonical model, mapping of the canonical
specification into AMN and verification of AMN-specifications refinement are
considered further.

Canonical specification generated by the translator of the OWL wine ontology
into the canonical model (briefly described in previous section) looks as follows:

{ Wines; in: module, ontology;

type:

{ Wine; in: type, owl;

hasColor: WineColor;

metaslot in: HasColor; min_card: 1; max_card: 1 end

},

{ DessertWine; in: type, owl;

supertype: Wine;

restriction_hasSugar: {

in: predicate, invariant;

{{ all w/DessertWine (in(w.hasSugar, {OffDry, Sweet})) }}

};

},

{ HasSugar; in: association, metaclass, owl;

instance_section: { domain: Wine; range: WineSugar; };

},

{ WineSugar; { enum; enum_list: {Dry, OffDry, Sweet} } };

class_specification:

{ wine; in: class, owl;



instance_section: Wine;

},

{ dessertWine; in: class, owl;

superclass: wine;

instance_section: DessertWine;

}; }

Enumerated classes of OWL (for instance, WineSugar) are represented in
the canonical model as enumerated types having the same names. Classes (for
instance, Wine) are represented by types (Wine) and classes (wine) of the canon-
ical model. Object properties (for instance, hasSugar) are represented by type at-
tributes and association metaclasses (HasSugar). Property value restrictions are
represented by type invariants (for instance DessertWine.restriction hasSugar).

The image under mapping of this canonical specification into AMN looks as
follows:

REFINEMENT Wines
SETS AVAL,WineSugar = {Sweet ,OffDry ,Dry}
CONSTANTS Obj , ext Wine, ext DessertWine
PROPERTIES

Obj ∈ POW (AVAL) ∧ ext Wine ∈ POW (Obj ) ∧
ext DessertWine ∈ POW (Obj ) ∧ ext DessertWine ⊆ ext Wine

VARIABLES
wine, iceWine, dessertWine, hasSugar

INVARIANT
wine ∈ POW (ext Wine) ∧ dessertWine ∈ POW (ext DessertWine) ∧
dessertWine ⊆ wine ∧ hasSugar ∈ ext Wine → WineSugar ∧
∀w(w ∈ ext DessertWine ⇒ hasSugar(w) ∈ {OffDry ,Sweet}) ∧

OPERATIONS
include Wine(obj ) = . . .
include DessertWine(obj ) = . . .
set hasSugar(obj , val) =
PRE

obj ∈ wine ∧ val ∈ WineFlavor ∧
obj ∈ dessertWine ⇒ val ∈ {OffDry ,Sweet}

THEN
hasSugar(obj ) := val

END

Set of all abstract values (values of all abstract data types) is represented in
AMN by AVAL set. Set of object type values is represented by Obj — subset of
AVAL. Types are represented by their extents — sets of admissible values (for
instance, type Wine is represented by extent ext Wine). Extents of object types
are typed in PROPERTIES clause as subsets of Obj . Type — subtype relation
is represented by set — subset relation over extents.



Classes (for instance wine) are represented by variables typed in INVARI-
ANT clause as subsets of extents of instance types. Class — subclass relation is
represented by set — subset relation over respective variables.

Type attributes (for instance hasSugar) are represented by variables typed
in INVARIANT clause as functions having type extents as domains.

Every class is represented also by an operation adding a new instance to the
class. Every attribute is represented also by an operation modifying the attribute
value of some object. In the example the body of only one operation (related to
the attribute hasSugar) is considered. The operation modifies the value of the
attribute hasSugar of the object obj to the value val if and only if the precondition
of the operation holds. The precondition guarantees preserving of the invariant
after the execution of the operation.

AMN-specifications related to OWL wine ontology and its canonical speci-
fication were used as input for the tool of refinement proving (B-Toolkit 5.4.1.
[9]). It automatically formulated 49 theorems, expressing the fact of specification
refinement. Large number of theorems is explained by automatically subdividing
complex theorems by the tool into simpler ones to prove them independently. 11
theorems were proved automatically, the rest were proved interactively. In the
table 2 total number of theorems formulated and number of theorems automat-
ically proved are shown.

Table 2. The number of theorems

Number of Number of
theorems automatically

proved theorems

Theorem of non-emptiness of the joint state 1 0
Theorems of refinement for operation include Wine 17 5
Theorems of refinement for operation include DessertWine 20 5
Theorems of refinement for operation set hasSugar 11 1

Total number of theorems 49 11

4 Related Work

During last ten years the most close research are carried out by the Microsoft
Research and some universities of Europe and USA. The aim of the research
consists in the development of unified methods and tools for metadata manip-
ulation in database area primarily. These methods and tools are concentrated
on mapping of a database schema expressed in one data model into respective
database schema expressed in the other model [12].

The main idea of ModelGen approach [13] is using a metamodel – a set
of constructions applied for definition of data models that are instances of the



metamodel. For the definition of this set of constructions the unified, independent
of any data model metaconstructions are used. Metaconstructions were classified
by Hull and King [14] applying some categories.

Every model is identified by a subset of such constructions and respective
metaconstructions. Mapping of a schema expressed in one data model into the
other is defined in terms of metaconstruction transformation. Supermodel is a
data model containing constructions that corresponds to all metaconstructions
known to system. Every data model is a specialization of the supermodel, so a
schema expressed in any data model is a schema in supermodel.

Mapping includes the following steps:

1. Translation of source schema into supermodel.
2. Translation of the result into target schema realized in frame of the super-

model.
3. Translation of the target schema into target model.

First and third steps are said to be labor-intensive and straightforward because
every model (source or target) is subsumed by supermodel. Transformation coded
by the authors relates only to the second step.

Problems of translation of schemas expressed in source data model (e.g. ob-
ject, relational, XML-oriented) into target one are considered in [15]. A proto-
type for interactive generation of relational schemas from object-oriented ones
embedded into Microsoft Visual Studio 2005 is mentioned. For the schema trans-
lation specific rules are used, intended to eliminate those constructions of source
schema that are not presented in target data model.

The authors of [16] propose to use extensible model. Specialization and re-
finement are to be used for extending the model metaconstructions of which are
organized as inheritance hierarchy (lattice) of predefined concepts. The approach
is considered as an alternative for the supermodel metaconstruction approach.

A result of research of IBM Almaden Center — CLIO [17] system — allows
to map source database schemas into target ones expressed in a restricted subset
of structured information models.

Briefly a comparison of approach proposed in this paper (SYNTHESIS) and
ModelGen approach, developed independently, includes the following points.

Expressibility of the supremodel and the canonical model. SYNTHESIS canon-
ical model is a language of specification of subject mediators as applications.
Supermodel of ModelGen is not a complete language and serve as auxiliary in-
strument for the schema mapping. Metaconstructions of the canonical model
kernel (SYNTHESIS language [6]) are not restricted by structured data models
as ModelGen. The set of metaconstructions is much more comprehensive and
includes object and nonobject abstract data types (ADT), frames and typed
values constituting hybrid strictly typed and semistructured model, functions
specified by signatures, pre- and postconditions, classes as sets of objects of
specific type, subtype and subclass relations, associations between instances of
ADT, metaclasses, type and class invariants expressed by logic formulae, pro-
cesses. Supermodel constructions are easily included into constructions of the



canonical model. Note that the proposed approach of information model map-
ping construction is quite general and does not depend on the specific canonical
model kernel.

Extending of models. Extending of the canonical model essentially differs from
extending of supermodel. Extending of the canonical model is a semantic process
of introduction into model of new patterns of parameterized closed logical formu-
lae expressing data dependencies, parameterized generic data types, metaframes
annotating additional properties of constructions. A process of ModelGen super-
model extending is mainly a mechanical introduction of new metaconstructions.

Preserving of information in the process of model mapping. In SYNTHE-
SIS the source information models are considered to be defined by respective
languages with their syntax and semantics. ModelGen approach uses only data
structure specifications. Detailed analysis of language semantics, integrity con-
straints, functions are not considered. This leads to information loss while data
model mapping (for instance, during mapping of object models into relational
one). SYNTHESIS approach is based on formal definition of semantics of com-
plete schemas in source and target models. Thus proving of refinement of target
schema by source schema becomes possible. Refinement relation is formally de-
fined and its use allows to preserve the information and operations during the
information models mapping and to avoid non-formally defined concepts (such
as correspondence, specialization, subsuming of schemas).

Architecture differences. The Model Unifier infrastructure is developed in
accordance with mentioned differences of SYNTHESIS and ModelGen. The pro-
cess of mapping of source model into the canonical model includes definition of
required extension of the kernel based on matching of constructions of source
and canonical models, proving of correctness of the mapping, and construction
of translator from source model into the canonical one with the help of meta-
compilation tools. Matching of constructions of source and canonical models as
well as kernel extension are interactive creative processes realized by an expert
supported by reference schemas related to constructions of source and target
models. Structure and verbal annotations of reference schemas allow to estab-
lish similarity of constructions.

It should be clear that the approach proposed is much more general than
ModelGen. Instead of choosing of a very limited set of structural data model
facilities (ModelGen), it is required to select the whole information description
and manipulation languages as the kernel of the target canonical model. We
show that the level of generality of our approach is much greater than that of
the ModelGen and other known approaches.

Alongside with the Meta Environment used in the current version of the Uni-
fier it is possible to use other tools, namely implementations of QVT language.
QVT (Query/View/Transformation) [18] is the OMG standard for model trans-
formation having several analogues, for instance, ATL (ATLAS Transformation
Language) [19]. In this framework source and target models should be expressed
in M3 MOF metamodel or its analogues, for instance, Ecore of Eclipse Modeling
Framework or KM3 — Kernel Meta Meta Model, developed by ATLAS INRIA



group[19]). Model transformation is expressed by an expert using declarative–
imperative language. Also transformation is a model itself expressed in M3 MOF
(Ecore, KM3) metamodel.

Consequently existing approaches are characterized by lack (insufficiency) of
accurate specifications of language semantics, lack of information model map-
ping verification (in MDA for instance), lack of synthesis of extensible unifying
(canonical) model. Methods developed by the authors differ from existing ones
by basing on extensible canonical model, constructed in a modular way extend-
ing the kernel, having strictly defined formal foundations, widely applying of
refinement while unifying model transformation.

5 Conclusion

Complexity of various information models semantics makes integration and com-
position of heterogeneous resources hardly realizable. The only practical way
is to map heterogeneous specifications to common, unifying model called the
canonical one. Over a long period of time the authors have been developing the
methods of canonical models synthesis for the wide range of real information
models: structured, object, service, process including their arbitrary combina-
tions. The methods developed preserve information and operations according to
the refinement principle while mapping source models into the canonical one.
With regard to large variety of information models the manual application of
developed methods for real systems becomes inefficient.

New approach for heterogeneous information models mapping into the unified
target model for the information resources integration in I-systems is proposed.
The approach provides semi-automatic generation of provably correct refining
mappings as respective compilers from the source information models into the
target extensible canonical information model. Information model refinement as
an important property of the mapping and extensibility of the canonical model
kernel for obtaining refinement mappings are fundamental new contribution of
our approach. The approach is independent of a canonical model kernel chosen.
Selection of a kernel may depend on the purpose and environment of a particular
I-system.

The paper presents architecture and functions of the Model Unifier allowing
to reduce heterogeneous sources information models to canonical representation.
The process of provable mapping of source information model into the canonical
one is illustrated by the example of fragments of the Web Ontology Language
(OWL). The kernel of the canonical model is constituted by hybrid object-frame
language SYNTHESIS. The Model Unifier is being tested on various kinds of
source information models. The Unifier is considered as a constituent part of the
subject mediator middleware.

References

1. Kalinichenko L. A., Briukhov D. O., Martynov D. O., Skvortsov N. A., Stupnikov
S. A. Mediation Framework for Enterprise Information System Infrastructures



// The 9th International Conference on Enterprise Information Systems (ICEIS).
2007.

2. Kalinichenko L.A. Method for Data Models Integration in the Common Paradigm
// Advances in Databases and Information Systems: Proc. of the First East-
European Conference. – St. Petersburg: Nevsky Dialekt, 1997. P. 275–284.

3. Kalinichenko L. A. Methods and tools for equivalent data model mapping con-
struction // Proc. EDBT’90 Conference. – Springer-Verlag, 1990. P. 92–119.

4. Kalinichenko L. A., Stupnikov S. A., Zemtsov N. A. Extensible Canonical Process
Model Synthesis Applying Formal Interpretation // East-European Conference
ADBIS’05. – Springer, 2005.

5. Kalinichenko L. A. Canonical model development techniques aimed at semantic
interoperability in the heterogeneous world of information modeling // Knowledge
and model driven information systems engineering for networked organizations:
Proc. of the CAiSE INTEROP Workshop. – Riga: Riga Technical University, 2004.
P. 101–116.

6. Kalinichenko L. A., Stupnikov S. A., Martynov D. O. SYNTHESIS: a Language
for Canonical Information Modeling and Mediator Definition for Problem Solving
in Heterogeneous Information Resource Environments. – M.: IPI RAS, 2007. – 171
p. – http://synthesis.ipi.ac.ru/synthesis/publications/07synthesis

7. Van den Brand M. G. J. et al. The ASF+SDF meta-environment: a component-
based language development environment // Compiler Construction 2001 / Ed. by
R. Wilhelm. – Springer, 2001. P. 365–370.

8. Abrial J.-R. The B-Book: Assigning Programs to Meanings. – Cambridge: Cam-
bridge University Press, 1996.

9. The B-Toolkit. – http://www.b-kernel.com/ONLINEDOC/BToolkit.html
10. OWL Web Ontology Language Reference. W3C Recommendation. –

http://www.w3.org/TR/owl-ref/, 2004.
11. Patel-Schneider P. F., Hayes P., Horrocks I. OWL Web Ontology

Language Semantics and Abstract Syntax // W3C Recommendation,
http://www.w3.org/TR/owl-semantics/, 2004.

12. Atzeni P. Schema and data translation: A personal perspective // 11th East
European Conference ADBIS 2007. – Springer, 2007.

13. Atzeni P., Cappellari P., Bernstein P. ModelGen: Model Independent Schema
Translation // 21st International Conference on Data Engineering, 2005.

14. Hull R., King R. Semantic database modeling: Survey, applications and research
issues // ACM Computing Surveys, 1987, V. 19, 3.

15. Bernstein P., Melnik S., Mork P. Interactive Schema Translation with Instance-
Level Mappings // 31st VLDB Conference, 2005.

16. Barsalou T., Gangopadhyay D. M(dm): an open framework for interoperation of
multimodel multidatabase systems // ICDE 1992. – Los Alamitos: IEEE Computer
Society Press, 1992.

17. Haas L., et al. Clio, 2005. Grows Up: From Research Prototype to Industrial
Tool // Proc. of the ACM SIGMOD Conference, 2005, Baltimore, Maryland, USA.

18. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification //
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07, 2007.

19. ATL Project // http://www.eclipse.org/m2m/atl/


