
Андрей Посконин

SQL и NoSQL:
пути сотрудничества

аспирант кафедры Системного программирования ВМК МГУ

Московская секция ACM SIGMOD

27 марта 2014

• Введение. Современные приложения и сервисы

• RDBMS или NoSQL – что выбрать?

• SQL + NoSQL = ?

• Объектное отображение в приложениях

• SQL + NoSQL на уровне объектного отображения

• Заключение

Содержание

• Быстрый рост – проблема масштабируемости

– Рост объёма данных

– Рост нагрузок

• Быстрая разработка прототипа

• Расширяемость и поддержка

• Оптимизация финансовых затрат

• Отказоустойчивость

• Опыт взаимодействия (User Experience)

Современные приложения и сервисы

• Вертикальное масштабирование (Scale-Up)

• Горизонтальное масштабирование (Scale-Out)

Современные приложения и сервисы

• Работа с неоднородными данными

– Структурированные и неструктурированные данные

– Соотношение операций чтения/записи

– Время отклика и надежность

– Необходимость транзакционной семантики

– Объём данных

– Нагрузка на систему

– Возможности языка запросов

– ...

Современные приложения и сервисы

• Impedance Mismatch

Современные приложения и сервисы

Модель данных

Запрос, таблица,
строка, столбец,

атрибут, документ,
коллекция, …

Язык
программирования

Класс, объект, поле,

метод, функция,
массив, …

?

Современные приложения и сервисы

Данные Бизнес-логика Клиенты

• Строгая схема базы данных

• ACID-транзакции

• Используются более 40 лет

• Развитый инструментарий

• Богатая функциональность

• Наличие стандартов

Традиционные RDBMS

• Вертикальное масштабирование

• Горизонтальное масштабирование

– Репликация

• Master-Slave

– Шардинг (разделение данных)

• Непрозрачно для приложения

• Проблемы с транзакциями и контролем

целостности

Традиционные RDBMS

• Оптимизация

– Оптимизация запросов

– Создание индексов

– Оптимизация транзакций

– Кэширование

– Ослабление ACID

– Денормализация

SQL-ориентированные СУБД

Отказ от основ RDBMS

• Модель данных

– Нормализация

• Декомпозиция сложной сущности

• JOIN – дорогая операция

• Отказ от нормализации ради быстродействия

– Строгая схема базы данных (таблица с фиксированным

набором столбцов)

• Динамические атрибуты?

SQL-ориентированные СУБД

• Динамические атрибуты средствами SQL

– «Широкая» разреженная таблица

– Таблица для каждого подтипа

– Entity-Attribute-Value

SQL-ориентированные СУБД

• Промежуточное ПО для масштабирования

поверх традиционных RDBMS

• NewSQL– масштабируемый SQL

– Шардинг и репликация

– Поддержка ACID-транзакций

– Предпочтительны «узкие» транзакции

– Проектирование и развертывание усложняются

– Поддерживается не вся функциональность SQL

Новые RDBMS

• Not Only SQL

• Нереляционные модели данных

• Распределённая архитектура

• Горизонтальная масштабируемость

• Ослабленные гарантии согласованности данных

• Нет ACID-транзакций

• Большое разнообразие решений

NoSQL

• Ключ-значение

– Поиск и модификация по уникальному ключу

• Документная

– Документ – это объект с произвольным набором

атрибутов

– Поиск по сочетанию атрибутов, индексы

• Google BigTable

– Горизонтально и вертикально разделённая таблица

NoSQL: модели данных

• Теорема CAP (E. Brewer, 2000)

NoSQL: согласованность данных

NoSQL: согласованность данных

• Модели согласованности

NoSQL: MongoDB

• Документная модель данных (JSON)

NoSQL: MongoDB

• Нет строгой схемы

• Запросы по образцу

• MapReduce, Aggregation Framework

• Поддержка индексов

• Репликация и шардинг

• Нет ACID-транзакций

• Атомарность на уровне одного документа

• Настраиваемые параметры надежности

• Богатая функциональность (пространственные индексы,

GridFS и т.д.)

NoSQL: MongoDB

• Транзакции

– На уровне одного документа все операции атомарны

– Версии, Compare-and-Set для оптимистических

блокировок

– Durability выполняется при включенном

журналировании

– Реализация полноценных транзакций сложна и

неэффективна

SQL или NoSQL?

• Выбор системы хранения определяется задачей

– Структура данных

– Требования к масштабируемости

– Необходимость полноценных транзакций

– Гарантии согласованности

– Надежность и отказоустойчивость

– Возможности языка запросов

• Универсальной СУБД не существует

SQL + NoSQL

• Постепенное сближение SQL и NoSQL

– Усиление согласованности в NoSQL-системах

– Появление NewSQL-систем

– Поддержка как SQL, так и NoSQL-интерфейсов для

доступа к данным

– Появление трансляторов SQL в запросы к NoSQL-

системам и MapReduce

– UnQL (Unstructured Query Language) – SQL-подобный

язык запросов

SQL + NoSQL

• Использование NoSQL (преимущественно Key-

Value-систем) в качестве кэша, чтобы разгрузить

RDBMS

• Репликация между SQL и NoSQL-системами

(для последующей обработки или хранения)

• Использование нескольких систем хранения

данных в одном приложении (Polyglot

Persistence)

Polyglot Persistence

Polyglot Persistence

• Несколько систем хранения данных в одном

приложении

– Каждая подзадача решается эффективно

– Минимизируются компромиссы и ручная реализация

недостающей функциональности

– Повышается сложность приложения

– Различные интерфейсы доступа к данным

Polyglot Persistence

• Service-Oriented Architecture (SOA) как способ

борьбы со сложностью

Polyglot Persistence

• Service-Oriented Architecture (SOA)

– Все детали работы с данными скрываются за

интерфейсом сервиса

– Возможность удобно распределять обязанности

разработчиков

– Больше работы и накладных расходов на реализацию

абстракции и взаимодействия

– Нецелесообразно для небольших проектов

Объектное отображение

• Чаще всего для разработки приложений

применяются объектно-ориентированные языки

• Требуется отображение объектной модели на

модель данных целевой СУБД

• Отображение может быть реализовано вручную,

либо с использованием библиотек

• Возможны различные уровни абстракции

Абстракция или производительность?

• Большое количество промежуточных слоев между

приложением и системой хранения ведёт к падению

производительности и сложности оптимизации.

Производительность

Уровень абстракции

Object-Relational Mapping (ORM)

• Высокий уровень абстракции ORM-библиотек

Приложение

Функциональность ORM

Абстракция от конкретной СУБД

Интерфейс доступа к БД

Драйвер СУБД

СУБД

Object-Relational Mapping (ORM)

• Высокий уровень абстракции ORM-библиотек

– Высокоуровневый интерфейс

– Не зависят от особенностей целевой СУБД

– Управляют жизненным циклом объектов

– Предоставляют «объектный» язык запросов

– Трудно оптимизировать под конкретную СУБД

– Легко написать неэффективный код

– Низкая производительность по сравнению с работой

напрямую с драйвером СУБД

Object-Document Mapping (ODM)

• ODM требует гораздо меньше преобразований

(Impedance Mismatch меньше)

• Поддерживаются вложенные объекты, списки и

другие «денормализованные» структуры

• Каждая библиотека работает только с одной

конкретной документной СУБД (например,

MongoDB)

Библиотеки объектного отображения

• Нацелены на один тип систем

• Сложно расширять и оптимизировать

• Трудно использовать в высоконагруженных

приложениях

• Уменьшают Impedance Mismatch

• Ускоряют и упрощают разработку приложения

• Уровень объектного отображения естественным

образом подходит для интеграции систем хранения

Интеграция на уровне отображения

• Отображение на различные системы хранения

• Простота

• Быстрая разработка приложений

• Настраиваемый уровень абстракции

• Возможность оптимизации

• Производительность

• Расширяемость

Интеграция на уровне отображения

• Существующие решения

– Hibernate OGM (Object/Grid Mapper) – позволяет

использовать несколько NoSQL-систем c JPA, работа

вместе с RDBMS пока не поддерживается

– Doctrine Project: ORM, MongoDB ODM, CouchDB ODM

– LINQ to SQL, FluentMongo с поддержкой LINQ

– Адаптеры для некоторых библиотек и программных

каркасов

Интеграция на уровне отображения

• Реализация: MapperStack –

библиотека/программный каркас для Web-

приложений

– Прототип

– Язык реализации - PHP 5.3

– В настоящий момент поддерживается работа с

MySQL и MongoDB

– Высокоуровневый язык запросов

– Модульная архитектура

Интеграция на уровне отображения

• Data Mapper

Дополнительный слой ответственен за

отображение объектов предметной области

Пример. Сущность BlogPost

Пример. Инициализация

Пример. Запросы

Пример. Создание, изменение, удаление

Сущность

• Сущность (Entity)

– В отличие от ORM может быть графом объектов

– Помимо полей скалярных типов может содержать:

• Списки

• Объекты

• Списки объектов

• …

– Может отображаться на JSON-документ

– Таблица – частный случай JSON-документа

Сущность

• Сущность (Entity)

– Обладает уникальным идентификатором (id)

– Может содержать произвольный набор полей

– Операции проверки наличия (isset) и удаления поля

(unset)

– NULL и отсутствие поля – разные вещи

– Может иметь конструктор с параметрами

– Определяет метаданные для отображения

– Может содержать код для проверки ограничений

целостности данных

Модель предметной области

Отображение сущностей

product

Order

MongoMapper SQLMapper
MongoDB RDBMS

MapperStack

orders

Product

Реализация отображения

• Mapper – объект, осуществляющий отображение

– Должен реализовывать интерфейс Mapper (например,

методы find(), findBy(), findOneBy(), getEntityId() и т.д.)

– Может использоваться независимо

– Стандартные реализации – SQLMapper,

MongoMapper

– Могут быть расширены пользователем

– Возможны полностью пользовательские реализации

отображения

Метаданные

• Метаданные описывают отображение

сущностей. Например:

– Соответствие полей объекта и колонок/атрибутов

– Отображение типов

– Поле уникального идентификатора

– Таблица/коллекция для отображения

– Требуют эффективного доступа

– Стандартные реализации: MetaClass, EntityMetaClass

Реализация отображения

• Тип – определяет отображение типа данных

системы хранения на тип данных языка

программирования и обратно

• Например, IP-адреса эффективнее хранить как

BIGINT, но в приложении удобнее иметь дело со

строковым представлением

• Стандартные типы (integer, string, …)

• Возможно определение пользовательских типов

или работа без преобразования типов

Реализация отображения

• Преобразование из «сырых» данных в объекты

– Преобразование типов данных (transform)

– Построение объектов (hydrate)

• Преобразование объектов в «сырые» данные

– [Построение списка изменений (changeset)]

– Извлечение данных из объектов (extract)

– Обратное преобразование типов данных (transform)

• Могут использоваться как стандартные реализации,

так и пользовательские

Реализация отображения

• Отслеживание изменений

– Явное (сущность сама генерирует события изменения

полей). Низкая производительность при

множественных изменениях полей.

– Неявное (исходные данные сохраняются, а затем

сравниваются с новым состоянием сущности).

Накладные расходы на сравнение всех полей при

небольших изменениях. Память не дублируется

(copy-on-write).

Реализация отображения

• Unit of Work

– Все операции изменения откладываются до вызова

метода flush(), который выполняет их в нужном

порядке

– Каждый Mapper реализует UoW для управляемых им

сущностей

– Объект класса MapperStack координирует работу

Mapper-объектов, позволяя учитывать ассоциации

между сущностями и реализует глобальный UoW

Ассоциации

• Могут связывать сущности, отображаемые на разные

системы хранения

• Реализуются поверх слоя отображения, используются

методы find(), findBy(), findOneBy()

• Соответствующие «внешние ключи» получают

актуальные значения на при вызове метода

MapperStack::flush()

• «Ленивая» загрузка сущностей

• Не требуется генерация кода

• Owning/Inverse-стороны связи

Ассоциации

Наследование

• Динамические атрибуты позволяют в некоторых

случаях избежать наследования

• Полноценное наследование может быть

реализовано с использованием атрибутов-

дискриминаторов и поддержки со стороны

компонентов библиотеки

Унифицированный язык запросов

• Синтаксис не связан с SQL или другим языком

запросов, например, JSONiq

• Запросы в терминах сущностей

• Покрывает базовые потребности по выборке

объектов

• Основные операции:

– filter, sort, skip, limit, project

Унифицированный язык запросов

• Filter – позволяет задать логическое выражение

для выбора подмножества сущностей

– Сравнение значения поля и параметра

– Операции И (&&), ИЛИ (||), НЕ (!)

– Предикаты, в том числе пользовательские (regexp, …)

– Пути в графе объектов (comment.user.name)

– Сопоставление элементов списка (tags{ … })

– Поддержка встроенных и связываемых параметров

Унифицированный язык запросов

• Трансляция и исполнение запросов

Запрос
Дерево условия

запроса
Продвижение

отрицаний

Построение
шаблона

целевого запроса

Подстановка
параметров

Исполнение
целевого запроса

Преобразование
данных

Построение
объектов

Результат

Унифицированный язык запросов

• Связываемые параметры позволяют кэшировать шаблон

целевого запроса и не производить лексический и

синтаксический анализ в следующий раз

• Язык запросов может быть расширен добавлением

новых предикатов

• Для сложных запросов эффективнее использовать

«родной» язык запросов целевой системы хранения

Унифицированный язык запросов

MySQL:

MongoDB:

Унифицированный язык запросов

• Пример (MongoDB):

Кэширование

• Адаптеры для различных систем кэширования

(Memcache, APC и т. д.)

• Кэш первого уровня (Identity Map)

• Кэш результатов запросов

• Кэш второго уровня может быть реализован на

уровне отображения

• Кэширование служебной информации

Целостность данных

• Отложенное исполнение операций

модификации

• Возможность проверки целостности данных

перед записью

• Возможность использовать транзакции на

уровне соединения с сервером СУБД

• Возможна реализация оптимистических

блокировок

Дальнейшее развитие

• Поддержка большего числа систем и источников

данных (например, REST-сервисов)

• Оптимизация

• Поддержка наследования

• Поддержка агрегатных функций

• Поддержка оптимистических блокировок

• Поддержка MapReduce

• Модификация без чтения

• …

Заключение

• Соединение в приложениях SQL и NoSQL-

решений открывает новые возможности

• Интеграция SQL и NoSQL может быть

осуществлена на уровне объектного

отображения

• Отсутствие стандартизации существенно

усложняет интеграцию

Спасибо за внимание!

