
Extensible Canonical Process Model
Synthesis Applying Formal InterpretationSynthesis Applying Formal Interpretation

Leonid Kalinichenko, Sergey Stupnikov, Nikolay Zemtsov

Institute for Problems of Informatics
Russian Academy of Sciences

E-mail: {leonidk, ssa, nazem}@ipi.ac.ru

1

Motivation for the Creation of the
Canonical Information Models

SQL
• diversity of information

models
models, languages

ODMG
SQL UML XML

Process Ontological

RDF

Models Workflow
Models

Ontological
Models

Metadata
Models

MDA Web
Services

Di i l
architectures

• need for integration, reuse
and composition of
information resources

OMGDBMS

Digital
LibrariesGrid

information resources W3CWFMC

information

resources

• accumulation of
heterogeneous information
resources

2

S nthesis of the Canonical ModelSynthesis of the Canonical Model

M1
refines

M1

M2

E1

E2K l
refines M2E2

E3

Kernel

refines
M3E3

Resource information modelsCanonical Model

3

Refinement Formalization (I)

Abstract Machine Notation

B Toolkit,
A li

A

Atelier B
automatic/
interactive

refines

proofB

First order logic & set theory

4

Refinement Formalization (II)

Type U = < VU, OU, IU > is a refinement of type T = < VT,
OT, IT > ifT, T

• there exists one-to-one correspondence Ops between OT
and OV;

• there exists an abstraction function Abs: VU →VT;
• for every o in OT there exists an operation Ops(o) = o’ in T

OU such that o’ is a refinement of o:
• precondition pre(o) imply precondition pre(o’);
• postcondition post(o’) imply precondition post(o);

5

Abstract Machine Notation

• Based on first order predicate logic and Zermelo-Frenkel
set theory with axiom of choice;y ;

• allows to consider specifications of state space and
behaviour in an integrated way;

• state is introduced by state variables together with
invariants;

• behaviour is introduced by operations defined as
generalized substitutions – predicate transformers;

• refinement is formalized by formulating proof obligations.

6

Refinement Formalization in AMN
REFINEMENT M
REFINES K
CONSTANTS cM

REFINEMENT N
REFINES M
CONSTANTS cN

Theorem of joint state non-emptiness

PM ∧ PN ⇒ ∃ (v,w) (IM ∧ IN)

PROPERTIES PM

VARIABLES v
INVARIANT I

PROPERTIES PN

VARIABLES w
INVARIANT IN

Theorem of initialization refinement

P P ⇒ [I it] [I it] IINVARIANT IM

INITIALISATION InitM

OPERATIONS
()

INITIALISATION InitN

OPERATIONS
y ← op(x) =

PM ∧ PN ⇒ [InitN] ¬ [InitM] ¬ IN

Theorem of operation refinement
y ← op(x) =
PRE Preop,M

THEN

PRE Preop,N

THEN
Defop,N

PM ∧ PN ∧ IM ∧ IN ∧ Preop,M ⇒
Preop,N∧ [Defop,N{y → y'}] ¬ [Defop,M] ¬

(I ∧ y'=y)
Defop,M

END

p,

END
(IN ∧ y'=y)

“Operation refinement”Operation refinement
Under the refinement relation and the precondition of the more abstract operation, the
precondition of the more concrete operation holds;

7
For every execution of concrete operation there is a corresponding execution of abstract
operation from the same initial state which establishes the same external result values
and reestablishes the refinement relation between the post-states.

Main Points of the Canonical Process Model
(CPM) Synthesis

1 CPM kernel

5

1. CPM kernel 1
2. AMN-semantics of

kernel
3

Ei
5

Kernel
kernel

3. source models Mi
Mi

2

4. AMN-semantics of
source models 4

5. extensions Ei and
mapping Mi → Ei

2

AMN
[Mi]6. [Mi] refines [Ei] [Ei] refines

6

8

Kernel of the Canonical Process Model

• subset of scripts of the
SYTHESIS language SYNTHESIS

S i tScripts• based on Petri Nets model
functions

t k bj t

• transitions are binded

• tokens are objects
objects

transitions are binded
with functions

9

Example of a Script

{ discriminator; in: script;
params: { branch1/function, … , entrance1TokenType/type, … };
states: {entrance1; token: entrance1TokenType;}, …states: {entrance1; token: entrance1TokenType;}, …
transitions:
{Branch1;
from: entrance1; bind from: {entrance1, in};; _ { , };
to: auxPlace1; bind_to: {auxPlace1, out};
activity: {in: function;
params: {+in/entrance1TokenType, -out/auxPlace1TokenType};
{{branch1(in, out)}}

}
},
…

}

10

Main Points of the Canonical Process Model
(CPM) Synthesis

1 CPM kernel

5

1. CPM kernel 1
2. AMN-semantics of

kernel
3

Ei
5

Kernel
kernel

3. source models Mi
Mi

2
4. AMN-semantics of

source models 4

5. extensions Ei and
mapping Mi → Ei

2
AMN

[Mi]6. [Mi] refines [Ei] [Ei] refines

6

11

AMN-semantics of the CPM Kernel

• [Abrial] – Event B
• [Butler] – csp2B: A Practical Approach to Combining CSP

and B
• [Treharne, Schneider] – How to Drive a B-machine
• [Butler, Snook] – Verifying Dynamic Properties of UML

Models by Translation to the B language and Toolkit
• [Ledang, Souquieres] – Contributions for Modeling UML

State-Charts in B

12

Example: AMN-semantics of theExample: AMN semantics of the
discriminator Script

REFINEMENT DiscriminatorScriptREFINEMENT DiscriminatorScript
SETS Obj
CONSTANTS ext_entrance1TokenType, …
PROPERTIES ext entrance1TokenType: POW(Obj)PROPERTIES ext_entrance1TokenType: POW(Obj) …
VARIABLES entrance1, …
INVARIANT entrance1: POW(ext_entrance1TokenType) …
OPERATIONSOPERATIONS
Branch1 =
SELECT #t.(t: entrance1) THEN
ANY t WHERE t: entrance1 THEN
entrance1:= entrance1 – {t} ||
ANY r WHERE r: ext_auxState1TokenType THEN
auxState1:= auxState1 \/ {r}{ }

END
END
END

13
…

Main Points of the Canonical Process Model
(CPM) Synthesis

1 CPM kernel

5

1. CPM kernel 1
2. AMN-semantics of

kernel
3

Ei
5

Kernel
kernel

3. source models Mi
Mi

2

4. AMN-semantics of
source models 4

5. extensions Ei and
mapping Mi → Ei

2

AMN
[Mi]6. [Mi] refines [Ei] [Ei] refines

6

14

Source Models

• [van der Aalst, 2003] The analysis of large number of
WfMS process models;p ;

• as a result 20 workflow patterns were obtained;
• set of workflow patterns is complete;p p ;
• every pattern is considered as a source model.

15

An Example of Workflow Pattern: Discriminator

entrance1 auxPlace1

exit

Branch1

Trunk

entrance2 auxPlace2Branch2entrance2 auxPlace2Branch2

16

Main Points of the Canonical Process Model
(CPM) Synthesis

1 CPM kernel

5

1. CPM kernel 1
2. AMN-semantics of

kernel
3

Ei
5

Kernel
kernel

3. source models Mi
Mi

2

4. AMN-semantics of
source models 4

5. extensions Ei and
mapping Mi → Ei

2

AMN

4

[Mi]6. [Mi] refines [Ei] [Ei] refines

6

17

AMN-semantics of Source Models

• Workflow patterns are defined in YAWL (Yet Another
Workflow Language) developed by van der Aalst;g g) p y ;

• workflow specification in YAWL is a set of Extended
Workflow Nets (EWF-nets), forming a hierarchical tree-
like structure;

• EWF-net is a tuple <C, i, o, T, F, join, split, rem>;
• an appropriate AMN-semantics was defined for YAWL.

18

Example: AMN-semantics of theExample: AMN-semantics of the
Discriminator Pattern

REFINEMENT Discriminator
SETS States = { state_enter1, …}
VARIABLES states, …
INVARIANT states: States → NAT …
OPERATIONS
enter branch1 =_
SELECT exec_branch1=0 & states(state_enter1)>0
THEN
ANY t WHERE t: entrance1 THENANY t WHERE t: entrance1 THEN
states(state_enter1):= states(state_enter1)-1 ||
exec_branch1:= exec_branch1+1

ENDEND
END
…

19

Main Points of the Canonical Process Model
(CPM) Synthesis

1 CPM kernel

5
1. CPM kernel 1
2. AMN-semantics of

kernel
3

EiKernel
kernel

3. source models Mi
Mi

2

4. AMN-semantics of
source models 4

5. extensions Ei and
mapping Mi → Ei

2

AMN
[Mi]6. [Mi] refines [Ei] [Ei] refines

6

20

Extensions of the Kernel

• For every workflow pattern Mi a kernel extension Ei is a generic
(parameterized) script type;

• parameters of a script type are types of the places and

• functions binded with the transitions.

in: script;

f

in: script;
params: T1/type, T2/type, F/function;object of

type T1

objects of
type T2

21function F

Extension of the Kernel by Discriminator Script

{ discriminator; in: script;
params: { branch1/function, … , entrance1TokenType/type, … };
states: {entrance1; token: entrance1TokenType;}, …states: {entrance1; token: entrance1TokenType;}, …
transitions:
{Branch1;
from: entrance1; bind from: {entrance1, in};; _ { , };
to: auxPlace1; bind_to: {auxPlace1, out};
activity: {in: function;
params: {+in/entrance1TokenType, -out/auxPlace1TokenType};
{{branch1(in, out)}}

}
},
…

}

22

Main Points of the Canonical Process Model
(CPM) Synthesis

1 CPM kernel

5

1. CPM kernel 1
2. AMN-semantics of

kernel
3

Ei
5

Kernel
kernel

3. source models Mi
Mi

2

4. AMN-semantics of
source models 4

5. extensions Ei and
mapping Mi → Ei

2

AMN
[Mi]6. [Mi] refines [Ei] [Ei] refines

6
23

Statistics for the Proof of Refining DiscriminatorStatistics for the Proof of Refining Discriminator
Script Type by Discriminator Pattern

Kind of theorem Number
of

theorems

Number of
automatically

proved p
theorems

The theorem of the unified state non-emptiness
Th f th i iti li ti fi t

1
6

0
6Theorems of the initialisation refinement

Theorems of refinement for operation enter_branch1
Theorems of refinement for operation exit_branch1

6
7
7

6
5
4

Theorems of refinement for operation enter_branch2
Theorems of refinement for operation exit_branch2
Theorems of refinement for operation enter trunk

7
8
16

5
5
11Theorems of refinement for operation enter_trunk

Theorems of refinement for operation exit_trunk
16
13

11
2

Total number of theorems 65 38

24

Total number of theorems 65 38

Conclusions

• Canonical process model was synthesized: kernel was
chosen and extensions corresponding to 20 workflow p g
patterns were defined;

• the process of extension was formally verified;
• the canonical process model can be used as a basis for the

methods of integration, reuse and composition of the
heterogeneous process components.

25

