Extensible Canonical Process Model
Synthesis Applying Formal Interpretation

Leonid Kalinichenko, Sergey Stupnikov, Nikolay Zemtsov

Institute for Problems of Informatics
Russian Academy of Sciences

E-mail: {leonidk, ssa, nazem}@ipi.ac.ru

Motivation for the Creation of the
Canonical Information Models

. diversity of information

models

]

— =

- models, languages
Moo Ontologica
odels |Workilow Models
Models Models

need for integration, reuse ‘
and composition of

information resources

architectures

accumulation of
heterogeneous information
resources

information

resources

Synthesis of the Canonical Model

refines

refines

refines

Canonical Model Resource information models

Refinement Formalization (1)

Abstract Machine Notation

B Toolkit,
Atelier B

refines \
P

automatic/
Interactive
proof

Refinement Formalization (11)

Type U=<V,, O, I,>1s arefinement of type T=<V,
Op [>1f

* there exists one-to-one correspondence Ops between O
and Oy;

* there exists an abstraction function 4bs: V;, =V

« for every o in Oy there exists an operation Ops(o) = o’ 1n
O, such that o’ 1s a refinement of o:
« precondition pre(o) imply precondition pre(o’);

 postcondition post(o’) imply precondition post(o);

Abstract Machine Notation

Based on first order predicate logic and Zermelo-Frenkel
set theory with axiom of choice;

allows to consider specifications of state space and
behaviour 1n an integrated way;

state 1s introduced by state variables together with
invariants:

behaviour 1s introduced by operations defined as
generalized substitutions — predicate transformers;

refinement 1s formalized by formulating proof obligations.

Refinement Formalization in AMN

REFINEMENT M REFINEMENT N Theorem of joint state non-emptiness

REFINES K REFINES M
CONSTANTS c,, CONSTANTS ¢, PynPy=3 (W) Uy~ 1)
PROPERTIES P
PROPERTIES Py, VARIABLES w ! Theorem of initialization refinement
VARIABLES v
INVARIANT /
INVARIANT / N . :
NITIALISATION i || NITIALISATION it Py APy = Unity] = nity] = 1
" || OPERATIONS
OPERATIONS Theorem of operation refinement
y <= op(x) = P
y <= 0p(x) = PRE Pre,
PREPI”eop,M THEN PM/\PN/\[MA]N/\Preop,M:
THEN Def,, Pre,, yn [Defo, Ay = ¥ = [Def,] =
END Uy AY=y)
Def, oM
END

“Operation refinement”

Under the refinement relation and the precondition of the more abstract operation, the
precondition of the more concrete operation holds;

For every execution of concrete operation there 1s a corresponding execution of abstract
operation from the same initial state which establishes the same external result values
and reestablishes the refinement relation between the post-states.

Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel

2. AMN-semantics of
kernel

3. source models Mi

4. AMN-semantics of
source models

5. extensions Ei and
mapping M1 — Ei

6. [Mi] refines [Ei]

1

il

AMN

refines

6

Kernel of the Canonical Process Model

e subset of scripts of the

SYTHESIS language SYNTHESIS

» based on Petri Nets model Scripts

"=~ functions
* tokens are objects

F=== objects

e transitions are binded
with functions

Example of a Script

{ discriminator; in: script;
params: { branchl/function, ..., entrancel TokenType/type, ... };
states: {entrancel; token: entrancel TokenType;}, ...
transitions:
{Branchl;
from: entrancel; bind from: {entrancel, in};
to: auxPlacel; bind to: {auxPlacel, out};
activity: {in: function;
params: {+in/entrancel TokenType, -out/auxPlacel TokenType};
{{branchl(in, out)}}

b
12

10

Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel 1

2. AMN-semantics of
kernel

3. source models Mi

4. AMN-semantics of

source models 2@ 4

5. extensions Ei and
mapping M1 — Ei

AMN

6. [Mi] refines [Ei] . refines -
6

11

AMN-semantics of the CPM Kernel

[Abrial] — Event B

[Butler] — csp2B: A Practical Approach to Combining CSP
and B

[Treharne, Schneider] — How to Drive a B-machine

[Butler, Snook] — Verifying Dynamic Properties of UML
Models by Translation to the B language and Toolkat

[Ledang, Souquieres] — Contributions for Modeling UML
State-Charts in B

12

Example: AMN-semantics of the
discriminator Script

REFINEMENT DiscriminatorScript
SETS Obj
CONSTANTS ext entrancel TokenType, ...
PROPERTIES ext entrancel TokenType: POW (Obj) ...
VARIABLES entrancel, ...
INVARIANT entrancel: POW (ext entrancel TokenType) ...
OPERATIONS
Branchl =
SELECT #t.(t: entrancel) THEN
ANY ¢t WHERE ¢: entrancel THEN
entrancel := entrancel — {t} ||
ANY r» WHERE r: ext_auxStatel TokenType THEN
auxStatel := auxStatel \/ {r}
END
END
END

13

Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel 1

2. AMN-semantics of
kernel

3. source models Mi

4. AMN-semantics of
source models 5 @ 4
5. extensions Ei1 and
mapping M1 — Ei
pping AMN

6. [Mi] refines [Ei] . refines -
6

14

Source Models

[van der Aalst, 2003] The analysis of large number of
WIMS process models;

as a result 20 workflow patterns were obtained;
set of workflow patterns 1s complete;

every pattern 1s considered as a source model.

15

An Example of Workflow Pattern: Discriminator

pom RN Emm o o o o e o o o o,

! entrancel Branchl auxPlacel \l

\ entrance2 Branch?2 auxPlace2

———————————————————

16

Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel

2. AMN-semantics of
kernel

3. source models Mi

4. AMN-semantics of
source models

5. extensions Ei1 and
mapping Mi — Ei

AMN

6. [Mi] refines [Ei] . refines -
6

17

AMN-semantics of Source Models

Workflow patterns are defined in YAWL (Yet Another
Workflow Language) developed by van der Aalst;

workflow specification in YAWL 1s a set of Extended
Workflow Nets (EWF-nets), forming a hierarchical tree-
like structure;

EWF-net 1s a tuple <C, 1, o, T, F, join, split, rem>;
an appropriate AMN-semantics was defined for YAWL.

18

Example: AMN-semantics of the
Discriminator Pattern

REFINEMENT Discriminator
SETS States = { state enterl, ...}
VARIABLES states, ...
INVARIANT states.: States — NAT ...
OPERATIONS
enter _branchl =
SELECT exec branchl=0 & states(state _enterl)>0
THEN
ANY ¢t WHERE ¢: entrancel THEN
states(state_enterl):= states(state enterl)-1 ||

exec_branchl:= exec branchl+1
END
END

19

Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel 1

2. AMN-semantics of
kernel

3. source models Mi

4. AMN-semantics of
source models 5 @ 4
5. extensions Ei1 and
mapping M1 — Ei
pping AMN

6. [Mi] refines [Ei] . refines -
6

20

Extensions of the Kernel

« For every workflow pattern M1 a kernel extension Ei 1s a generic

(parameterized) script type;

e parameters of a script type are types of the places and

* functions binded with the transitions.

object of

type T1

ﬁn: script;

params: T1/type, T2/type, F/function;

~

~~
-~
-~

__ objects of

type T2

function F

21

Extension of the Kernel by Discriminator Script

{ discriminator; in: script;
params: { branchl/function, ..., entrancel TokenType/type, ... };
states: {entrancel; token: entrancel TokenType;}, ...
transitions:
{Branchl;
from: entrancel; bind from: {entrancel, in};
to: auxPlacel; bind to: {auxPlacel, out};
activity: {in: function;
params: {+in/entrancel TokenType, -out/auxPlacel TokenType};
{{branchl(in, out)}}

b
12

22

Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel

2. AMN-semantics of
kernel

3. source models Mi

4. AMN-semantics of
source models

5. extensions Ei1 and
mapping Mi — Ei

AMN

6. [Mi] refines [Ei] . reﬁnes -

23

Statistics for the Proof of Refining Discriminator
Script Type by Discriminator Pattern

Kind of theorem Number | Number of
of automatically
theorems proved
theorems
The theorem of the unified state non-emptiness 1 0
Theorems of the initialisation refinement 6 6
Theorems of refinement for operation enter branchl 7 5
Theorems of refinement for operation exit branchl 7 4
Theorems of refinement for operation enter branch?2 7 5
Theorems of refinement for operation exit branch?2 8 5
Theorems of refinement for operation enter trunk 16 11
Theorems of refinement for operation exit trunk 13 2
Total number of theorems 65 38

24

Conclusions

« Canonical process model was synthesized: kernel was
chosen and extensions corresponding to 20 workflow
patterns were defined;

 the process of extension was formally verified;

 the canonical process model can be used as a basis for the
methods of integration, reuse and composition of the
heterogeneous process components.

25

