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Synthesis of the Canonical Model
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Refinement Formalization (11)

Type U=<V,, O, I,>1s arefinement of type T=<V,
Op [>1f

* there exists one-to-one correspondence Ops between O
and Oy;

* there exists an abstraction function 4bs: V;, =V

« for every o in Oy there exists an operation Ops(o) = o’ 1n
O, such that o’ 1s a refinement of o:
« precondition pre(o) imply precondition pre(o’);

 postcondition post(o’) imply precondition post(o);



Abstract Machine Notation

Based on first order predicate logic and Zermelo-Frenkel
set theory with axiom of choice;

allows to consider specifications of state space and
behaviour 1n an integrated way;

state 1s introduced by state variables together with
invariants:

behaviour 1s introduced by operations defined as
generalized substitutions — predicate transformers;

refinement 1s formalized by formulating proof obligations.



Refinement Formalization in AMN
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“Operation refinement”

Under the refinement relation and the precondition of the more abstract operation, the
precondition of the more concrete operation holds;

For every execution of concrete operation there 1s a corresponding execution of abstract
operation from the same initial state which establishes the same external result values
and reestablishes the refinement relation between the post-states.



Main Points of the Canonical Process Model
(CPM) Synthesis

1. CPM kernel

2. AMN-semantics of
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3. source models Mi

4. AMN-semantics of
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5. extensions Ei and
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Kernel of the Canonical Process Model

e subset of scripts of the

SYTHESIS language SYNTHESIS

» based on Petri Nets model Scripts

"=~ functions
* tokens are objects

F=== objects

e transitions are binded
with functions



Example of a Script

{ discriminator; in: script;
params: { branchl/function, ..., entrancel TokenType/type, ... };
states: {entrancel; token: entrancel TokenType;}, ...
transitions:
{Branchl;
from: entrancel; bind from: {entrancel, in};
to: auxPlacel; bind to: {auxPlacel, out};
activity: {in: function;
params: {+in/entrancel TokenType, -out/auxPlacel TokenType};
{{branchl(in, out)}}
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AMN-semantics of the CPM Kernel

[Abrial] — Event B

[Butler] — csp2B: A Practical Approach to Combining CSP
and B

[ Treharne, Schneider] — How to Drive a B-machine

[Butler, Snook] — Verifying Dynamic Properties of UML
Models by Translation to the B language and Toolkat

[Ledang, Souquieres] — Contributions for Modeling UML
State-Charts in B
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Example: AMN-semantics of the
discriminator Script

REFINEMENT DiscriminatorScript
SETS Obj
CONSTANTS ext entrancel TokenType, ...
PROPERTIES ext entrancel TokenType: POW (Obj) ...
VARIABLES entrancel, ...
INVARIANT entrancel: POW (ext entrancel TokenType) ...
OPERATIONS
Branchl =
SELECT #t.(t: entrancel) THEN
ANY ¢t WHERE ¢: entrancel THEN
entrancel := entrancel — {t} ||
ANY r» WHERE r: ext_auxStatel TokenType THEN
auxStatel := auxStatel \/ {r}
END
END
END
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Source Models

[van der Aalst, 2003] The analysis of large number of
WIMS process models;

as a result 20 workflow patterns were obtained;
set of workflow patterns 1s complete;

every pattern 1s considered as a source model.
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An Example of Workflow Pattern: Discriminator

pom RN Emm o o o o e o o o o,

! entrancel Branchl auxPlacel \l

\ entrance2 Branch?2 auxPlace2

———————————————————
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AMN-semantics of Source Models

Workflow patterns are defined in YAWL (Yet Another
Workflow Language) developed by van der Aalst;

workflow specification in YAWL 1s a set of Extended
Workflow Nets (EWF-nets), forming a hierarchical tree-
like structure;

EWF-net 1s a tuple <C, 1, o, T, F, join, split, rem>;
an appropriate AMN-semantics was defined for YAWL.
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Example: AMN-semantics of the
Discriminator Pattern

REFINEMENT Discriminator
SETS States = { state enterl, ...}
VARIABLES states, ...
INVARIANT states.: States — NAT ...
OPERATIONS
enter _branchl =
SELECT exec branchl=0 & states(state _enterl)>0
THEN
ANY ¢t WHERE ¢: entrancel THEN
states(state_enterl):= states(state enterl)-1 ||

exec_branchl:= exec branchl+1
END
END
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Extensions of the Kernel

« For every workflow pattern M1 a kernel extension Ei 1s a generic

(parameterized) script type;

e parameters of a script type are types of the places and

* functions binded with the transitions.

object of

type T1

ﬁn: script;

params: T1/type, T2/type, F/function;

~

~~
-~
-~

__ objects of

type T2

function F
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Extension of the Kernel by Discriminator Script

{ discriminator; in: script;
params: { branchl/function, ..., entrancel TokenType/type, ... };
states: {entrancel; token: entrancel TokenType;}, ...
transitions:
{Branchl;
from: entrancel; bind from: {entrancel, in};
to: auxPlacel; bind to: {auxPlacel, out};
activity: {in: function;
params: {+in/entrancel TokenType, -out/auxPlacel TokenType};
{{branchl(in, out)}}

b
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Statistics for the Proof of Refining Discriminator
Script Type by Discriminator Pattern

Kind of theorem Number | Number of
of automatically
theorems proved
theorems
The theorem of the unified state non-emptiness 1 0
Theorems of the initialisation refinement 6 6
Theorems of refinement for operation enter branchl 7 5
Theorems of refinement for operation exit branchl 7 4
Theorems of refinement for operation enter branch?2 7 5
Theorems of refinement for operation exit branch?2 8 5
Theorems of refinement for operation enter trunk 16 11
Theorems of refinement for operation exit trunk 13 2
Total number of theorems 65 38
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Conclusions

« Canonical process model was synthesized: kernel was
chosen and extensions corresponding to 20 workflow
patterns were defined;

 the process of extension was formally verified;

 the canonical process model can be used as a basis for the
methods of integration, reuse and composition of the
heterogeneous process components.
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