
PartiQL: Новый язык
запросов от компании
Amazon

Павел Велихов
Huawei

План доклада

❖ История PartiQL, N1Q1 и SQL++

❖ Обзор PartiQL

❖ Основные отличия от XQuery/JSONiq

❖ Основные отличия от PostgreSQL

История PartiQL

❖ 2014: первая версия SQL++ в системе FORWARD,
UCSD, Yannis Papakonstantinou

❖ 2015: AsterixDB поддерживает SQL++ (UC Irvine,
Mike Carey)

❖ 2015: Couchbase выпускает N1QL, далее переходит на
SQL++

❖ 2019: первая имплементация PartiQL в Amazon

Обзор PartiQL
❖ Модель данных

❖ Общая структура запросов PartiQL

❖ Select и Select value

❖ Pivot

❖ Запросы на вложенных структурах данных

❖ Нулевые значения (null, missing)

❖ Group as

❖ Снятие ограничений SQL на вложенные подзапросы

PartiQL модель данных
❖ Своя собственная модель данных PartiQL Data Model (супермножество JSON и SQL)

❖ примитивные типы из стандарта SQL

❖ массивы значений: [value_1, value_2,…]

❖ “мешки” значений: << value_1, value_2, value_1,… >>

❖ кортежи (неупорядоченные) : {‘key_1’:value_1, ‘key_2’:value_2, … }

❖ При этом реляционные таблицы отображаются в PartiQL:

❖ [

❖ {‘attribute_1’:value_1, ‘attribute_2’:value_2 … },

❖ …

❖]

❖ JSON отображается напрямую в PartiQL

Общая структура запроса PartiQL
❖ SQL-совместимый синтаксис

❖ В отличие от SQL, PartiQL может возвращать кортежи с
произвольной структурой

❖ Также, вместо списка кортежей, PartiQL может
возвращать список объектов

WITH …
SELECT expr_1, … expr_N
FROM table_1 as alias_1 …
WHERE expr
GROUP BY group_by_list
HAVING expr

Дополнительные конструкции PartiQL и SQL++

❖ LET clause

❖ Кванторы существования и всеобщности

❖

SELECT e.name
FROM employee e
LET yearly_salary = e.salary * 12

SELECT e.name
FROM employee e
WHERE EVERY job IN e.jobs
SATISFIES job.employer = ‘Amazon’

Select и Select Value
SELECT e.name
FROM employee e

employee = <<
 {‘name’:’John’,
 ‘salary’:10000,
 ‘department’:’IT’},
 {‘name’:[‘Tim’,’Gates’],
 ‘salary’:25000}
>>

<<{‘name’:’John’},
 {‘name’:[‘Tim’,’Gates’]}>>

SELECT VALUE e.name
FROM employee e

<<’John’, [‘Tim’,’Gates’]>>

Pivot и Unpivot
PIVOT s.price AT s.symbol
FROM symbols s

symbols:<<
 {‘symbol’:’’tdc','price':31.52},
 {‘symbol':'amzn','price':840.05}
>>

{‘tdc’:313.52, ‘amzn’:840.05}

SELECT symbol as symbol,
 price as price
FROM trades t
UNPIVOT t AS price AT symbol
WHERE symbol != ‘date’

trades:<<
 {‘date’:’4/1/2019’,’tdc’:31.52,
 ‘amzn’:840.05}
>>

<< {‘symbol’:’tdc’,’price’:31.52},
 {‘symbol’:’amzn’,’price’:840.05}
 >>

PartiQL From Clause
SELECT *
FROM employee e,
 dept d
WHERE e.name = d.manager

employee = <<
 {‘name’:’John’,
 ‘salary’:10000,
 ‘department’:’IT’},
 {‘name’:[‘Tim’,’Gates’],
 ‘salary’:25000}
>>

<< {‘e’: {‘name’:’John’,…},
 ‘d’:{‘name’:’IT’,…}} >>

SELECT *
FROM dept AS d AT y

<< {‘d’: {‘name’:’IT’,…}, y:0},
 {‘d’: {‘name’:’Accounting’,…}, y:1}
>>

dept = <<
 {‘name’:’IT’,
 ‘manager’:’John’},
 {‘name’:’Accounting’,
 ‘managers’:[‘Scott’,’Jane’]}
>>

Вложенные данные
dept = <<
 {‘name’:’IT’,
 ‘manager’:’John’},
 {‘name’:’Accounting’,
 ‘managers’:[
 {‘name’:’Scott’,
 ‘grade’:17},
 {‘name’:Jane’}
]
 }
>>

SELECT ms
FROM dept AS d,
 d.managers as ms

SELECT ms[0] AS m0
FROM dept AS d,
 d.managers as ms

<<{‘ms’:[{‘name’:’Scott’,…},
 {‘name’:’Jane’}]} >>

<<{‘m0’:{‘name’:’Scott’,…}} >>

Вложенные данные
dept = <<
 {‘name’:’IT’,
 ‘manager’:’John’},
 {‘name’:’Accounting’,
 ‘managers’:[
 {‘name’:’Scott’,
 ‘grade’:17},
 {‘name’:Jane’}
]
 }
>>

SELECT ms[0].name as n
FROM dept AS d,
 d.managers as ms

SELECT name
FROM dept AS d,
 d.managers[0].name as name

<<{‘n’:’Scott’}>>

<<{‘name’:’Scott’}>>

Вложенные данные
dept = <<
 {‘name’:’IT’,
 ‘manager’:’John’},
 {‘name’:’Accounting’,
 ‘managers’:[
 {‘name’:’Scott’,
 ‘grade’:17},
 {‘name’:Jane’}
]
 }
>>

SELECT m
FROM dept AS d,
 d.managers as ms,
 m in ms

<<{m:{‘name’:’Scott’,…}},
 {m:{‘name’:’Jane’}} >>

Вложенные данные
dept = <<
 {‘name’:’IT’,
 ‘manager’:’John’},
 {‘name’:’Accounting’,
 ‘managers’:[
 {‘name’:’Scott’,
 ‘grade’:17},
 {‘name’:Jane’}
]
 }
>>

SELECT d, m
FROM dept AS d,
 LEFT JOIN d.managers as ms,
 LEFT JOIN m in ms

<< {d:{‘name’:’IT’,…},
 {d:{‘name’:’IT’,…}, m:{‘name’:’Scott’,…}},
 {d:{‘name’:’IT’,…}, m:{‘name’:’Jane’}} >>

Создание вложенных данных
employee = <<
 {‘name’:’John’,
 ‘salary’:10000,
 ‘department’:’IT’},
 {‘name’:[‘Tim’,’Gates’],
 ‘salary’:25000}
>>

dept = <<
 {‘name’:’IT’,
 ‘manager’:’John’},
 {‘name’:’Accounting’,
 ‘managers’:[‘Scott’,’Jane’]}
>>

SELECT VALUE
 {‘emp-dept’:
 {‘employee’:e},
 {‘dept’:d}}
FROM employee AS e
 dept as d
WHERE e.name = dept.name

<< {‘emp-dept’:
 {‘employee’:
 {‘name’:’John’,…},
 ‘dept’:
 {‘name’:’IT,…},
 }
 }
>>

NULL и Missing
❖ Кроме традиционного NULL в PartiQL модель данных
вводится MISSING

❖ Из путевых выражений и при доступе к массивам мы
можем получить MISSING значение

❖ Также, операции с неправильными типами данных
приводят к MISSING значениям

❖ MISSING ведет себя почти как NULL, кроме отдельных
предикатов и конструкции новый объектов

NULL и MISSING
❖ Обычные операции над значениями идентичны семантики NULL
значений в SQL, например следующие выражения возвращают
MISSING:

❖ 5+missing, 5 > ‘a’, NOT {a:1}

❖ Оператор = в PartiQL глубокий, и при сравнении массивов NULL
приравнивается к MISSING

❖ Если имя атрибута или его значение MISSING - то этот атрибут не
попадает в кортеж при его создании в SELECT

❖ При этом при создании массивов MISSING значения попадают в
новый массив

Примеры MISSING при создании элементов

SELECT t.x + 1 AS y
FROM [{‘x’:1}, {‘x’:’a’}, {‘z’:1}] t

<< {‘y’:2} >>

SELECT VALUE [t.x + 1]
FROM [{‘x’:1}, {‘x’:’a’}, {‘z’:1}] t

<< [2], [MISSING], [MISSING] >>

Group AS
SELECT VALUE g
FROM customers AS c, orders AS o
WHERE c.cust_id = o.cust_id
GROUP BY c.address.zipcode
GROUP AS g

<< [{‘c’:c1, ‘o’:o1}, {‘c’:c2, ‘o’,o2}],
 [{‘c’:c3, ‘o’:o3}],
 …
>>

Group AS
SELECT zip, `best rating`, `best customers`
FROM customers AS c
GROUP BY c.address.zipcode AS zip
GROUP AS g
LET `best rating` = MAX(c.rating),
 `best customers` =
 (SELECT gi.c.custid, gi.c.name
 FROM g AS gi
 WHERE gi.c.rating = `best rating`
 ORDER BY gi.c.custid)
ORDER BY zip;

Снятие ограничений вложенных запросов в SQL

❖ В SQL коррелированные подзапросы ограничены -
они не могут использовать данные друг-друга

❖ В PartiQL и SQL++ эти ограничения сняты

❖ Например:

❖

SELECT c, o
FROM customer as c,
 (SELECT o
 FROM order as o
 WHERE o.id = c.id) AS o

Правила коэрции вложенных запросов

❖ Вложенный запрос PartiQL приводится к
атомарному типу или типу массив

❖

SELECT v.foo,(SELECT w.bar
 FROM someDataSet w
 WHERE w.sth = v.sthelse) AS bar
FROM anotherDataSet v

SELECT VALUE {’foo’: v.foo’bar’: COLL_TO_SCALAR(
 SELECT VALUE {’bar’: w.bar}
 FROM someDataSet w
 WHERE w.sth = v.sthelse)}
FROM anoterDataSet v

Сравнение с XQuery
❖ Преимущества XQuery:

❖ Рекурсивные путевые выражения

❖ Исключения и их обработка

❖ Отсутсвие понятия NULL и связанной с ними семантики

❖ Более чистая семантика GROUP BY

❖ Преимущества PartiQL:

❖ Совместимость с SQL

❖ Независимость семантики от схемы данных

Сравнение с PostgreSQL

❖ В PostgreSQL имплементированы только путевые
выражения

❖ Основные операторы -> и ->> возвращают JSON
объекты или текст, работают как сверху массивов так
и объектов

❖

-> [{"a":"foo"},{"b":"bar"},
{"c":"baz"}]'::json->2

{"c":"baz"}

-> {"a": {"b":"foo"}}'::json->'a' {"b":"foo"}

->> [1,2,3]'::json->>2 3

->> {"a":1,"b":2}'::json->>'b' 2

#> {"a": {“b":{"c": "foo"}}}'::json#>'{a,b}' {"c": "foo"}

#>> {"a":[1,2,3],"b":[4,5,6]}'::json#>>'{a,2}' 3

Сравнение с PostgreSQL

❖ Дополнительные операторы: @>, <@, ?, ?|, ?&, ||, -,
#-

❖ 23 функции для различных операций над JSON,
включая конструкцию объектов

❖ Все это можно сделать в PartiQL с помощью общего
языка запросов

Другие No-SQL языки

❖ GraphQL

❖ MongoDB

❖ Jaql

