
ОБРАБОТКА И ОПТИМИЗАЦИЯ
SPARQL-ЗАПРОСОВ К
СЕМАНТИЧЕСКИМ RDF ХРАНИЛИЩАМ

МИХАИЛ ГАЛКИН

University of Bonn & Fraunhofer IAIS

29.03.2018 Moscow

Michael Galkin, 29.03.2018 Moscow

OUTLINE

▸ Double-degree PhD student at the University of Bonn and ITMO University

▸ Smart Data Analytics Department @ Uni Bonn

▸ Researcher at Fraunhofer IAIS

▸ Enterprise Information Systems Department @ IAIS

▸ 19 publications (14 conference + 3 workshops + 2 journals)

▸ Joint task force on semantic data management:  
Maria-Esther Vidal, Ioanna Lytra, Maribel Acosta, Kemele M. Endris,
Mohammed N. Mami 

ABOUT

2

Michael Galkin, 29.03.2018 Moscow

OUTLINE

▸ Intro to RDF + SPARQL

▸ Motivation: Semantic Data Integration

▸ MULDER: A Federated Query Engine

▸ SMJoin: A Multi-way Join Operator for SPARQL

▸ SJoin: A Semantic Join Operator

▸ MSimJoin: A Multi-way Semantic Join Operator

OUTLINE

3

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

RDF 101

4

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

▸ Resource Description Framework - a graph-based model
with formal semantics encoded in vocabularies

RDF 101

4

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

▸ Resource Description Framework - a graph-based model
with formal semantics encoded in vocabularies

RDF 101

<subject> <predicate> <object>

4

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

▸ Resource Description Framework - a graph-based model
with formal semantics encoded in vocabularies

RDF 101

<subject> <predicate> <object>

 MSU isA University

4

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

▸ Resource Description Framework - a graph-based model
with formal semantics encoded in vocabularies

RDF 101

<subject> <predicate> <object>

 MSU isA University
dbr:Moscow_State_University rdf:type dbo:University

4

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

▸ Resource Description Framework - a graph-based model
with formal semantics encoded in vocabularies

RDF 101

<subject> <predicate> <object>

 MSU isA University

<http://dbpedia.org/resource/Moscow_State_University> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/University>

dbr:Moscow_State_University rdf:type dbo:University

4

http://dbpedia.org/resource/Moscow_State_University
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/University

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

RDF 101 - RDFS & OWL SEMANTICS

5

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

RDF 101 - RDFS & OWL SEMANTICS

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

type

type type

founded

facultyOfbasedIn

MSU type University; 
 founded "25.01.1755".  
 
SIGMOD_Chapter type Seminar;  
 basedIn MSU.  
 
CMaC type Faculty; 
 facultyOf MSU.

5

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

RDF 101 - RDFS & OWL SEMANTICS

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

Organization

type

type type

founded

facultyOfbasedIn

subClassOf subClassOf
subClassOf

MSU type University; 
 founded "25.01.1755".  
 
SIGMOD_Chapter type Seminar;  
 basedIn MSU.  
 
CMaC type Faculty; 
 facultyOf MSU.

Seminar rdfs:subClassOf Organization. 
Faculty rdfs:subClassOf Organization. 
University rdfs:subClassOf Organization. 
 
Seminar owl:disjointWith Faculty.

disjointWith

5

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

REASONING

6

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

REASONING

MSU University

Organization

type

subClassOf

 
MSU type University; 
 founded "25.01.1755". 
 
University rdfs:subClassOf Organization.

6

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

REASONING

MSU University

Organization

type

subClassOf

 
MSU type University; 
 founded "25.01.1755". 
 
University rdfs:subClassOf Organization.

MSU type Organization.  

type

6

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

SPARQL QUERIES

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

Organization

type

type type

founded

facultyOfbasedIn

subClassOf subClassOf
subClassOf

SELECT ?date WHERE { 
 ?seminar type Seminar .  
 ?seminar basedIn ?uni .  
 ?uni founded ?date . }

disjointWith

7

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

SPARQL QUERIES

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

Organization

type

type type

founded

facultyOfbasedIn

subClassOf subClassOf
subClassOf

SELECT ?date WHERE { 
 ?seminar type Seminar .  
 ?seminar basedIn ?uni .  
 ?uni founded ?date . }

disjointWith

7

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

SPARQL QUERIES

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

Organization

type

type type

founded

facultyOfbasedIn

subClassOf subClassOf
subClassOf

SELECT ?date WHERE { 
 ?seminar type Seminar .  
 ?seminar basedIn ?uni .  
 ?uni founded ?date . }

disjointWith

7

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

SPARQL QUERIES

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

Organization

type

type type

founded

facultyOfbasedIn

subClassOf subClassOf
subClassOf

SELECT ?date WHERE { 
 ?seminar type Seminar .  
 ?seminar basedIn ?uni .  
 ?uni founded ?date . }

disjointWith

7

Michael Galkin, 29.03.2018 Moscow

INTRODUCTION

SPARQL QUERIES

MSU University

"25.01.1755"

SIGMOD 
 Chapter CMaC

FacultySeminar

Organization

type

type type

founded

facultyOfbasedIn

subClassOf subClassOf
subClassOf

SELECT ?date WHERE { 
 ?seminar type Seminar .  
 ?seminar basedIn ?uni .  
 ?uni founded ?date . }

disjointWith

?date = "25.01.1755"

7

Michael Galkin, 29.03.2018 Moscow

MOTIVATION

▸ Scalable data integration of numerous heterogeneous sources

▸ Large-scale heterogeneous data integration using RDF
molecules:  
RDF only data : AdPart, DiploCloud 
Non-RDF data: Hadoop, HBase  
RDF + Non-RDF: Semantic Data Lake

▸ A uniform query mechanism does not exist

▸ Semantics of RDF datasets it not considered

RESEARCH MOTIVATION

8

Michael Galkin, 29.03.2018 Moscow

DATA INTEGRATION SYSTEMS AND DATA LAKES

▸ Semantic Data Lake is defined as:  
SDL = <O, S, SD> = <O, S, <Rule, Access Capability, Type>>  
O - Ontology, Global Schema  
S - Sources 
SD - Source Description

▸ <Source Description> comprises:  
Rule: Mapping Rule among Sources and Ontology 
Access Capability: SPARQL, TPF, Wrapper  
Type: RDF, RDB, CSV, XML, Plain Text, Multimedia  

SEMANTIC DATA LAKE

9

Michael Galkin, 29.03.2018 Moscow

SEMANTIC DATA LAKE ARCHITECTURE 10

Semantic Data Lake

Enterprise Knowledge Graph

GUI

ERP MDM ESB Web
Apps

REST XML / JSON SPARQL APIs

Ontological Coherence Layer

Governance

Maturity

Quality

Provenance

Security

Text Media (semi/un)-
structured data

RDB RDF

Enterprise Applications

Analytics

11

Michael Galkin, 29.03.2018 Moscow

APPROACHES

Observation

Pattern

Theory

Hypothesis

What will
happen?

How can we
make it happen?

Predictive
Analytics

Prescriptive
Analytics

What
happened?

Why did
it happen?

Descriptive
Analytics

Diagnostic
Analytics

Confirmation

Theory

Hypothesis

Observation

© Raghu Ramakrishnan @ Microsoft

12

Michael Galkin, 29.03.2018 Moscow

DATA WAREHOUSING

Implement Data Warehouse

Physical Design

ETL
Development

Reporting &
Analytics
Development

Install and Tune

Reporting &
Analytics Design

Dimension Modelling

ETL Design

Setup Infrastructure

Understand
Corporate
Strategy

Data sources

ETL

BI and analytic

Data warehouse

Gather
Requirements

Business
Requirements

Technical
Requirements

© Raghu Ramakrishnan @ Microsoft

13

DATA LAKE

Ingest all data
regardless of requirements

Store all data
in native format without
schema definition

Do analysis
Using analytic engines
like Hadoop

Interactive queries
Batch queries

Machine Learning
Data warehouse

Real-time analytics

Devices

© Raghu Ramakrishnan @ Microsoft

14

Michael Galkin, 29.03.2018 Moscow

COME TOGETHER

What happened?
What is happening?
Why did it happen?
What are key
relationships?

What will happen?
What if?
How risky is it?
What should happen?
What is the best option?
How can I optimize?

Data sources

© Raghu Ramakrishnan @ Microsoft

15

Michael Galkin, 29.03.2018 Moscow

DATA INTEGRATION SYSTEMS AND DATA LAKES

ONTARIO - ONTOLOGICAL ARCHITECTURE FOR DATA LAKES

16

Michael Galkin, 29.03.2018 Moscow

PROOF OF CONCEPT

▸ Data Organization: Build RDF molecules from heterogeneous
sources 
 
 
 
 

▸ Storage: Clusterize heterougeneous data in molecules across
distributed environments

▸ Querying: Develop a universal query mechanism

PROBLEMS TO ADDRESS

Source 1 Source 2 Source 3 RDF Molecule

(CSV)  
Name, LastName 
 
Michael, Galkin

<person> 
 <name> Galkin </name> 
 <city> Bonn </city>  
</person>

ex:person123 
 a foaf:Person; 
 foaf:name ‘Michael
Galkin’@en; 
 ex:university
ex:Uni_Bonn .

:MG :name Michael Galkin 
:MG :city Bonn
:MG :university Uni Bonn 
:MG :sources :Source1
:MG :sources :Source2
:MG :sources :Source3

17

Michael Galkin, 29.03.2018 Moscow

DATA INTEGRATION SYSTEMS AND DATA LAKES

ONTARIO APPLICATIONS - IASIS

18

EU H2020 project for management
and analytics of
pharmacogenomics data for
planning public health policies.

Patient data: molecular,
sequencing, electronic records,
and images.
Open pharmacogenomics datasets.

Two pilots:
Lung cancer
Alzheimer's Disease

Michael Galkin, 29.03.2018 Moscow

DATA INTEGRATION SYSTEMS AND DATA LAKES

ONTARIO APPLICATIONS - BIG DATA OCEAN

19

EU H2020 project for management
and analytics of maritime Big Data.

‣ Expected number of sources:
‣ 10,000 datasets
‣ 150TBs
‣ Seven types of sources

‣ Four pilots:
‣ Fault prediction and Proactive

maintenance
‣ Mare protection
‣ Maritime Security and
‣ Anomaly Detection
‣ Wave Energy Power

Michael Galkin, 29.03.2018 Moscow

DATA INTEGRATION SYSTEMS AND DATA LAKES

ONTARIO APPLICATIONS - WDAQUA

20

WDAqua is a Marie Skodowska
Curie Innovative Training Network
(ITN)

WDAqua Question Answering (QA)
architecture
‣Understands questions expressed

in different formats
‣Discovers high-quality datasets

suitable for question answering
‣Considers trust, provenance, and

data access control
‣ Scales QA up to Big Data

Michael Galkin, 29.03.2018 Moscow

MULDER EXPERIMENTS

MULDER QUERY
ENGINE

1. K. Endris, M. Galkin, I. Lytra, M. Mami, M. E. Vidal, S. Auer. MULDER: Querying the Linked Data Web
by Bridging RDF Molecule Templates. Best Paper Award @ DEXA 2017

2. K. Endris, M. Galkin, I. Lytra, M. Mami, M. E. Vidal, S. Auer. Querying Interlinked Data by Bridging RDF
Molecule Templates. Submitted to the LNCS Transactions on Large-Scale Data- and Knowledge-
Centered Systems Journal (Transactions LDKS)

21

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE

MOTIVATING EXAMPLE

22

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE

MOTIVATING EXAMPLE

SELECT DISTINCT ?s WHERE {
 ?s foaf:page ?page .
 ?s owl:sameAs ?sameas .
 ?s geonames:inCountry ?inCountry . }

t1

t2

t3

Geonames

t1

t2

32,581

117,915

NYTimes

t2 31,763

1,761t3

t1

t2

319

1,112

SWDF

22

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE

MOTIVATING EXAMPLE

SELECT DISTINCT ?s WHERE {
 ?s foaf:page ?page .
 ?s owl:sameAs ?sameas .
 ?s geonames:inCountry ?inCountry . }

t1

t2

t3

Geonames

t1

t2

32,581

117,915

NYTimes

t2 31,763

1,761t3

t1

t2

319

1,112

SWDF

t1 t2

t2 t3

371

1,249

Join # triples

t1 t2 524
swdf swdf

geo geo

nyt nyt

[

t1 t2 t3

t1 t2 t3

t1 t2 t3t2

geo

nyt

geo nyt

8
19
20

nyt

nyt

nyt

geo

geo

geo

ANAPSID SSGS ANAPSID SSGMFedX
t1

t2

t3 NYTimes

t1 SWDFt2

t3 NYTimes

t1

t2 NYTimest3

sec
triples

239.4
20

0.338
0

88.9
19

SWDF, Geo SWDF, Geo

SWDF, Geo, NYTimes

@

@

@

@

@

@

@

22

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE

▸ MULDER federated
query engine

▸ Leverages RDF
molecule templates

▸ Supports SPARQL
and TPF clients

MULDER - MOLECULE-BASED DECOMPOSITION FOR RDF

Fig. 1: The MULDER Client-Server Architecture. MULDER query pro-
cessing client receives SPARQL queries, creates query decompositions composed
of star-shaped subqueries, and identifies and executes bushy plans. MULDER
query processing server retrieves both RDF-MT metadata about RDF datasets
and results of executing queries over Web access interfaces

Given a SPARQL query Q and RDF datasets D={D1,. . . ,Dm}, the problem of
decomposing Q in D is defined as follows. For all BGPs BGP={t1,. . . ,tn} in Q,
find a query decomposition �(P |BGP, D) that satisfies the following conditions:

• The evaluation of �(P |BGP, D) in D is complete, i.e., if D⇤ represents the
union of RDF datasets in D, then the results of evaluating BGP in D⇤ and
the results of evaluating decomposition �(P |BGP, D) in D are the same, i.e.,

[[BGP]]D⇤ = [[�(P |BGP, D)]]D (2)

• �(P |BGP, D) has the minimal execution cost, i.e., if cost(�(P 0|BGP, D))
represents the execution time of a decomposition P 0 of BGP in D, then

�(P |BGP, D) = argmin
�(P 0|BGP,D)

cost(�(P 0|BGP,D)) (3)

We propose MULDER, a federated query engine for RDF datasets accessible
through Web access interfaces, to solve the problem of decomposing SPARQL
queries. The MULDER architecture is depicted in Fig. 1. MULDER query pro-
cessing client receives a SPARQL query, and identifies and executes a bushy
plan against RDF datasets. MULDER Decomposition & Source Selection cre-
ates a query decomposition with service graph patterns (SGPs) of star-shaped
subqueries built according to RDF-MT metadata. RDF-MTs describe the prop-
erties of the RDF molecules contained in the RDF datasets, where an RDF
molecule is a set of RDF triples that share the same subject. Once the star-
shaped subqueries are identified, a bushy plan is built by the MULDER Query
Planning; the plan leaves correspond to SGPs of the star-shaped subqueries.
The MULDER Query Engine executes the bushy plan and contacts the MUL-
DER query processing server to evaluate SGPs over the Web access interfaces.

▸ Plans to add the support for arbitrary data formats apart from RDF  
 - CSV 
 - JSON 
 - XML

23

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE

EXAMPLE QUERY

24

Michael Galkin, 29.03.2018 Moscow

EXAMPLE QUERY
PREFIX	qb:	<http://purl.org/linked-data/cube#>	
PREFIX	att:	<http://purl.org/linked-data/sdmx/2009/attribute#>	
PREFIX	eg:	<http://example.com/>	
PREFIX	rdfs:	<http://www.w3.org/2000/01/rdf-schema#>	
PREFIX	ct:	<http://data.linkedct.org/resource/linkedct/>	
PREFIX	gho:	<http://ghodata/>	
PREFIX	redd:	<http://redd.aksw.org/>	
SELECT	count(distinct(?publication))	AS	?no_of_publications	count(?deaths)	AS	?no_of_deaths	
WHERE	{	
				?item	a	qb:Observation	.	
				?item	gho:Country	?country	.	
				?item	gho:Disease	?disease	.									
				?item	att:unitMeasure	gho:Measure	.	
				?item	eg:incidence	?deaths	.	
				?country	rdfs:label	"India"	.	
				?disease	rdfs:label	"Tuberculosis".	
				?trial	a	ct:trials	.	
				?trial	ct:condition	?condition	.	
				?trial	ct:location	?location	.	
				?trial	ct:reference	?publication.																														
				?condition	owl:sameAs	?disease	.	
				?location	redd:locatedIn	?country	.	
				?publication	ct:citation	?citation.	
}	

http://db0.aksw.org:8895/sparql

MULDER QUERY ENGINE - DECOMPOSITION 25

Michael Galkin, 29.03.2018 Moscow

EXAMPLE QUERY
PREFIX	qb:	<http://purl.org/linked-data/cube#>	
PREFIX	att:	<http://purl.org/linked-data/sdmx/2009/attribute#>	
PREFIX	eg:	<http://example.com/>	
PREFIX	rdfs:	<http://www.w3.org/2000/01/rdf-schema#>	
PREFIX	ct:	<http://data.linkedct.org/resource/linkedct/>	
PREFIX	gho:	<http://ghodata/>	
PREFIX	redd:	<http://redd.aksw.org/>	
SELECT	count(distinct(?publication))	AS	?no_of_publications	count(?deaths)	AS	?no_of_deaths	
WHERE	{	
				?item	a	qb:Observation	.	
				?item	gho:Country	?country	.	
				?item	gho:Disease	?disease	.									
				?item	att:unitMeasure	gho:Measure	.	
				?item	eg:incidence	?deaths	.	
				?country	rdfs:label	"India"	.	
				?disease	rdfs:label	"Tuberculosis".	
				?trial	a	ct:trials	.	
				?trial	ct:condition	?condition	.	
				?trial	ct:location	?location	.	
				?trial	ct:reference	?publication.																														
				?condition	owl:sameAs	?disease	.	
				?location	redd:locatedIn	?country	.	
				?publication	ct:citation	?citation.	
}	

http://db0.aksw.org:8895/sparql

MULDER QUERY ENGINE - DECOMPOSITION 26

Michael Galkin, 29.03.2018 Moscow

DATA IN THE DATA LAKE

GHO

publications
Health
observations

trials

conditions

metawrapper
metawrapper metawrapper

metawrapper

MULDER QUERY ENGINE - PLANNING 27

Michael Galkin, 29.03.2018 Moscow

QUERY PLANNING

publications
Health
observations

trials

conditions

2. Planning

3. Meta-wrapper
invocation

1. Query Parsing
& Validation

Query

MULDER QUERY ENGINE - PLANNING 28

Michael Galkin, 29.03.2018 Moscow

Publications
Meta-wrapper

Observations
Meta-wrapper

Trials
Meta-wrapper

Wrapper (XML) Wrapper (CSV)

Conditions
Meta-wrapper

Wrapper (RDF)

4. Wrapper
Selection &
Query
Translation

?item gho:Country ?country .
?item gho:Disease ?disease .

SELECT country, disease FROM
Observations

Mapping rules

...

[Xpath]

...
...

[Sparql]

...
...

[Sparql]

...

5. Data
Extraction

MULDER QUERY ENGINE - WRAPPERS

R2RML

D2RQ

RML.ioSPARK SQL
SPARQL

Triple Pattern Fragments

29

http://RML.io

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE - MOLECULE TEMPLATES 30

Michael Galkin, 29.03.2018 Moscow

dbr:Fox_Mulder

dbr:David_
Duchovny

dbr:New_York_
City

dbr:FBIdbr:X-Files

dbo:occupationdbo:series

dbo:portrayer

dbo:birthPlace

dbo:Person

rdf:type

rdf:type

dbo:Fictional_
Character

rdf:type

geonames:
5128581

owl:sameAs

geonames:
Feature

rdf:type

dbo:City

rdf:type
8175133

geonames:population

MULDER QUERY ENGINE - MOLECULE TEMPLATES 30

Michael Galkin, 29.03.2018 Moscow

dbr:Fox_Mulder

dbr:David_
Duchovny

dbr:New_York_
City

dbr:FBIdbr:X-Files

dbo:occupationdbo:series

dbo:portrayer

dbo:birthPlace

dbo:Person

rdf:type

rdf:type

dbo:Fictional_
Character

rdf:type

geonames:
5128581

owl:sameAs

geonames:
Feature

rdf:type

dbo:City

rdf:type
8175133

geonames:population

dbo:Fictional_
Character

dbo:Person

geonames:
Feature

dbo:City

dbo:series

dbo:portrayer

dbo:occupation

dbo:occupation

dbo:birthPlace

owl:sameAs

geonames:population

dbo:series

MULDER QUERY ENGINE - MOLECULE TEMPLATES 30

Michael Galkin, 29.03.2018 Moscow

dbr:Fox_Mulder

dbr:David_
Duchovny

dbr:New_York_
City

dbr:FBIdbr:X-Files

dbo:occupationdbo:series

dbo:portrayer

dbo:birthPlace

dbo:Person

rdf:type

rdf:type

dbo:Fictional_
Character

rdf:type

geonames:
5128581

owl:sameAs

geonames:
Feature

rdf:type

dbo:City

rdf:type
8175133

geonames:population

dbo:Fictional_
Character

dbo:Person

geonames:
Feature

dbo:City

dbo:series

dbo:portrayer

dbo:occupation

dbo:occupation

dbo:birthPlace

owl:sameAs

geonames:population

dbo:series

dbo:Fictional_
Character

dbo:Person

geonames:
Featuredbo:City

dbo:series

dbo:portrayer

dbo:occupation

dbo:occupation

dbo:birthPlace

owl:sameAs
geonames:population

dbo:series

MULDER QUERY ENGINE - MOLECULE TEMPLATES 30

Michael Galkin, 29.03.2018 Moscow

dbr:Fox_Mulder

dbr:David_
Duchovny

dbr:New_York_
City

dbr:FBIdbr:X-Files

dbo:occupationdbo:series

dbo:portrayer

dbo:birthPlace

dbo:Person

rdf:type

rdf:type

dbo:Fictional_
Character

rdf:type

geonames:
5128581

owl:sameAs

geonames:
Feature

rdf:type

dbo:City

rdf:type
8175133

geonames:population

dbo:Fictional_
Character

dbo:Person

geonames:
Feature

dbo:City

dbo:series

dbo:portrayer

dbo:occupation

dbo:occupation

dbo:birthPlace

owl:sameAs

geonames:population

dbo:series

dbo:Fictional_
Character

dbo:Person

geonames:
Featuredbo:City

dbo:series

dbo:portrayer

dbo:occupation

dbo:occupation

dbo:birthPlace

owl:sameAs

geonames:population

dbo:series

intra-dataset link

inter-dataset link

dbo:Fictional_
Character

dbo:Person

geonames:
Featuredbo:City

dbo:series

dbo:portrayer

dbo:occupation

dbo:occupation

dbo:birthPlace

owl:sameAs
geonames:population

dbo:series

MULDER QUERY ENGINE - MOLECULE TEMPLATES 30

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE - MOLECULE TEMPLATES 31

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE - MOLECULE TEMPLATES

SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

31

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE - MOLECULE TEMPLATES

SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

?drug

?Int

db:drug_interaction

db:drugs
db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

?target

31

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE - MOLECULE TEMPLATES

SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

?drug

?Int

db:drug_interaction

db:drugs

db:interactionDrug1

db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

db:target

db:drugReference

?target

?drug

?Int

db:drug_interaction

db:drugs
db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

?target

31

Michael Galkin, 29.03.2018 Moscow

MULDER QUERY ENGINE - MOLECULE TEMPLATES

SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

?drug

?Int

db:drug_interaction

db:drugs

db:interactionDrug1

db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

db:target

db:drugReference

?target

?drug

?Int

db:drug_interaction

db:drugs
db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

?target

?ref

t5
t6t3 t4

?target?drug

t1
t2

?Int

t7
t8

db:referencedb:targetdb:drugs
db:drug_
interaction

31

Michael Galkin, 29.03.2018 Moscow

▸ MULDER-MT technique

▸ Graph Partitioning & Community Detection

▸ METIS - node partitioning

▸ semEP - edge partitioning

▸ Benchmarks:

▸ Berlin SPARQL Benchmark (BSBM)

▸ FedBench (9 interlinked datasets)

▸ Life Sciences Linked Open Data (LSLOD) (10 interlinked datasets)

▸ Compared Federated Query Engines: ANAPSID, FedX 

HOW TO BUILD MOLECULE TEMPLATES

MULDER QUERY ENGINE - MOLECULE TEMPLATES 32

Michael Galkin, 29.03.2018 Moscow

MOLECULE TEMPLATES - BSBM

�� �� ���� � � � �� �� ���� �

�
�

�� ���� � � �
�

� �� ���� �

�� �� ���� � � � �� �� ���� �

1

100

20 40 60
cardinality

Query B1

�

�

�
�

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

�� ��
� �

��
��

�

�

��

�
�

��

��

�

�

�
�

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

1

100

100 200 300 400
cardinality

Query B2

�

�

�

� �
�

�

�

�

�

�

�

� �

�

�
�

�

�
�

�

�
�

�

�
�

�

�� �
� �

�
��

�� ��
�

�

�

�

� �

�

�

�
�

�

�
�

� �

�

��

�

�
�

0.1

1.0

5 10 15 20
cardinality

Query B3
�

�

�

� � ��������

�

� ��� � �

�

� �� � ��������
�� ��� � �

� � �� � �������� �� ��� � �

1

100

0 100 200 300
cardinality

Query B4

�� ��� �� �� �� ��� ��� �� �

�

�

�

�

�

�
�

�

�

��

�

�

�

��

�

�

�

�

�

1

10

100

0 5000 10000
cardinality

Query B5

��

�

� ��� �� �� ��� ��� � ��

�

�

�

� �
�

�
�� �

�

�
�� ��� � ��

�
�

�

�
�

��
�� �

�
��

� ��� � ��

1

100

5 10 15
cardinality

Query B6
� ����� ���� ��� � ��� � � �

�

����
�

�
�

�

�
��

�
� �

�� �
� �

� ����� ���� ��� � ��� � � �

1

100

10 20 30
cardinality

Query B7

�

� �
� � ��� ����

���
� � ��� �

� ���

�

�� ��� � � �

�

���� �

1

100

0 50 100 150
cardinality

Query B8

������

�
��
�
���
��
�
����������

��������������

1

100

1
cardinality

Query B9
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

1

100 200 300 400
cardinality

Query B10
�� � � �� �� � ���� ���� �� �� �

�
� � ��

�
� � ���� �

�� �� �� �

100

5 10 15 20
cardinality

Query B11
� �

�

�

�

� �
�

��

�
�

�

�
���

� �
��

�

1

100

0 1000 2000
cardinality

Query B12

MULDER Molecules  
technique (RDF-MT) 
outperforms METIS  
and semEP

33

Michael Galkin, 29.03.2018 Moscow

MULDER EXPERIMENTS

QUERY EXECUTION

34

Michael Galkin, 29.03.2018 Moscow

MOLECULE TEMPLATES - FEDBENCH

BSBM RDF Molecules mined by MULDER

Review
Producer

ProductType

ProductFeature

Person

Offer

Vendor

Product

35

Michael Galkin, 29.03.2018 Moscow

▸ MULDER-MT technique

▸ Graph Partitioning & Community Detection

▸ METIS - node partitioning

▸ semEP - edge partitioning  

BSBM 100M TRIPLES

MULDER EXPERIMENTS

●●● ●●●
●

● ● ●●
●

●● ●●●●● ●

●●●
●

●
●

●
●

●
●● ●●

●

●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●

● ●●● ●●●● ●
● ●● ●● ●●

●●● ●● ●●
● ●

●●
● ● ● ●● ●● ●●●●● ●

0.1

1.0

0 5 10 15 20
cardinality

Query B1

● ●●
●

●●●
●

●

●● ●
● ●

●
● ●●●

●

● ●●● ●●●● ● ●● ● ●● ● ●●●
●

●
●●

● ●●● ●● ●

●

●
●●●●

● ● ●

●

●●●●●●●●●●●●●●●●●●●

●
●●

●●
●●

●●●●
●●●

● ●
●●

●●

0.1

1.0

10.0

0 10 20
cardinality

Query B2

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●
●● ●

●

● ●●
●

●

●

●
●

●
●●●●●●●●●●●

●●●●
●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

0.1

1.0

0 100 200 300 400
cardinality

Query B3

●● ●●
●

●●

●
●● ●

●
●● ●●●●● ●

●
● ●●

●

●

●

●
●

●

●

●
●

●

●●
●

●
● ●

●●●●●●●●

●

●●●●●●●●●●●

●●● ●● ●
●●

●●
●● ●

● ●●●●● ●
●

●● ●● ●●
●

●●●●
●

● ●●●●● ●

0.1

1.0

0 10 20 30 40
cardinality

tim
e

(m
s)

Query B4

●●
● ●

●
●

●
●

●
●

●

●

● ●●

●

●

●
●

●

●●

● ● ●●

●

●

●

●●

●

●●

●●●
●

●

●

●
●

●

●●●
●
●
●

●
●

●

●

●

●

●●
●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

1

100

10000

0 250 500 750 1000 1250
cardinality

Query B5

● ●●
●

●

●●● ●●● ●●●
●

●
●

●
●●

●

●

●

● ●●

●●

●●● ●●

●

●

●

● ●

●

●
●

●
● ●

● ●●●●● ●● ●
●

●
●● ●● ●

● ● ●● ● ●●●● ●● ●●● ●● ●●●●

●

●

●

●
● ●

●●●
●

● ●●●
●

●
● ●●

●

1

100

0 10 20 30
cardinality

Query B7

●●
●● ●

●
●● ●●

● ●

●
●●

●●
●

●
●

●●
●

● ●● ●●

●

●
● ●

●

●● ●
●

●●
●

1

100

5 10
cardinality

Query B8

●

●● ●●●● ● ●● ●● ●●●●● ●● ●

●

●
●

●●
●

●

●

●

●

● ● ●
●●

●
●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●●
●

●

●●
●●●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●
●●

●● ●● ●
0.1

1.0

10.0

0 1 2 3 4 5
cardinality

Query B10

●
●
●●●●●●●●●
●●●●
●●
●●

●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●
●
●

●

●

●●●●●●

●

●
●●

●

●
●●●●●●0.1

1.0

10
cardinality

Query B11

system ● ● ● ● ●anapsid direct fedx ontario rdf3xSDL

B1 B2 B3 B4 B5 B7 B10 B11

2

4

6

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

system

tim
e

(m
s) type

decomposition
planning

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

36

Michael Galkin, 29.03.2018 Moscow

▸ MULDER-MT technique

▸ Graph Partitioning & Community Detection

▸ METIS - node partitioning

▸ semEP - edge partitioning  

BSBM 200M TRIPLES

MULDER EXPERIMENTS

●
●

●
● ●

●

●

●

●● ●●● ●● ●● ● ●

●

●

●

●
● ●

●

●
● ●

●
●●● ●●

●

● ● ●●
●●●●●●●●●●●●●●●●●●●●

●

●●

●

● ● ●●● ●●
● ●●●

●● ● ●●
● ●

●
●

● ● ●●● ●
● ● ●●● ●● ● ●

●

0.1

1.0

0 5 10 15
cardinality

Query B1

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●
●

●● ●●●●● ● ●●● ● ●●●●● ●●

●
●

●
●

●
●●● ●

●
● ●●

●

●●●●
●●

●

●●●●●●●●
●
●●●●●●●●●●

● ●●
●●

●● ●●●
●

●

●

●

●●●●

●●

0.1

1.0

0 10 20 30
cardinality

Query B2

●

●
●●

●
●●

●

●
●●

●●
●

●

●
●
●

●●

●
●

●
● ●●
●

● ●
●●

●●

●

●

●
●
●

●●●

●

●●●●●●●●●
●●
●
●●●●●●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●●●

●

0.1

1.0

0 100 200 300 400 500
cardinality

Query B3

●

●●

●
●

●

●●●●

●
●

●
●

●

● ●● ●
●

●
●● ●

●

●
●

●
●●

●
●●

●
●

●
●●

●
●

●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●

●

●

●

●●● ●

●
●● ●

●
●● ●● ●● ●● ● ●●●●● ●

●
●● ●●

●
●

0.1

1.0

0 10 20 30 40 50
cardinality

tim
e

(m
s)

Query B4

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●●
●

●
●●●

●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

1

100

0 500 1000 1500 2000
cardinality

Query B5

●
●● ●● ●● ● ●

●
●

●
● ● ●●

●
● ● ●

● ●● ●● ●

●
●

● ●● ●● ● ●

●

●● ● ●

● ● ●● ●● ●● ● ● ●
● ●

● ●
●

●
● ● ●

●

● ●
● ●● ●● ● ● ●● ● ● ●● ●● ● ●

● ●
●● ●

●
●

● ●
● ●

●
● ● ●

●
●

● ●
●

1

100

0 5 10 15 20
cardinality

Query B7

●

●

●●● ●
●

●
●

●● ● ●● ●● ●●

●
●

●●●●●●

1

100

0.0 2.5 5.0 7.5 10.0
cardinality

Query B8

●
●

●
●

●●

●

●●
●

●
● ●

●

●

●

●

●

● ●

●

●

●

●
●●●
●
●
●

●
●

● ●

●
●

●

●

● ●

●
●
●●●●●●●
●●●●●●●●●●●

●●●● ●●●● ●●● ●● ●●● ●● ● ●

●●●● ●●●● ●●● ●● ●●●
●● ● ●0.1

1.0

10.0

0 2 4 6
cardinality

Query B10

●

●

●●●●●●

●

●●●●

●

●

●●

●

●

●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●
●
●

●
●●●●●●●●●●●
●●●●●●
●●0.1

1.0

10
cardinality

Query B11

system ● ● ● ● ●anapsid direct fedx ontario rdf3xSDL

B1 B2 B3 B4 B5 B7 B10 B11

2

4

6

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

system

tim
e

(m
s) type
decomposition
planning

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

37

Michael Galkin, 29.03.2018 Moscow

▸ MULDER-MT technique

▸ Graph Partitioning & Community Detection

▸ METIS - node partitioning

▸ semEP - edge partitioning  

BSBM 400M TRIPLES

MULDER EXPERIMENTS

●

● ●● ● ● ●

●

●
● ●●●

●

● ●● ●●

●

●

●

●
●●●●●●●●●●●●●●●●●

●

●
●

●● ●
● ●

●
●

● ●
●

●●

●

● ●● ●
●

●● ●
● ● ● ●● ●● ● ●●● ●● ●● ●

0.1

1.0

10.0

0 10 20 30 40
cardinality

Query B1

●
●

●
●● ● ●●●●

●
● ●●●● ●●●●

●

●

●
●●● ●

●

●

●● ●● ●●● ●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●

●
● ●●

●
● ●●

●
●

●
●●● ●● ●

0.1

1.0

0 10 20
cardinality

Query B2

●

●

●●

●
●●

● ● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●●

●

●
●

0.1

1.0

10.0

0 250 500 750 1000
cardinality

Query B3

●

●

● ●

●

●

●

●●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●

●
●
●●●
●
●

●
● ●

● ●● ● ●●
●●● ●

●
●● ●

●
●●

●● ●
● ●● ● ●●●●● ●

●
●

● ●
●

●●

0.1

1.0

10.0

0 25 50 75 100
cardinality

tim
e

(m
s)

Query B4

●
●

●●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●

●
●

●

●

●

●

●

●●
●
●●

●

●●
●●

●
●

●

●●●

●

●●

●

●

●

●

●

●

1

100

0 500 1000 1500 2000
cardinality

Query B5

●

● ●●●● ●● ●●●● ●●●● ● ●● ●

●

●

●
●●●●●

●

●●
●

●
●●

●
●●● ●

●

● ● ●●●● ●●

●

● ●● ●●● ● ●● ●

●
● ●

●●●● ●
● ●●

●
●

●●
●

● ●

●
●

0.1

1.0

10.0

10 20 30
cardinality

Query B7

●

●●

●

●●●●

●

●● ● ● ●● ● ●

●

●●

●

0.1

1.0

0.0 2.5 5.0 7.5 10.0 12.5
cardinality

Query B8

●

●●

●

● ●●

●

●

●

●●

●

●● ●

●

●

●●

●

●

●

●

●●●●
●●
●
●●●●
●●
●
●
●

●
●

●
● ●● ●● ●● ●●●
●● ● ●●

●●

● ● ●● ●● ●● ●● ●●●●● ● ●

●

●●
0.1

1.0

10.0

0 2 4 6
cardinality

Query B10

●

●●●●●●●●●●●●●●●●●●●

●
●●
●●●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●0.1

1.0

10
cardinality

Query B11

system ● ● ● ●anapsid direct fedx ontarioSDL

B1 B2 B3 B4 B5 B7 B8 B10 B11

2

4

6

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

an
ap

si
d

fe
dx

on
ta

rio

system

tim
e

(m
s) type

decomposition
planning

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

SD
L

38

Michael Galkin, 29.03.2018 Moscow

MOLECULE TEMPLATES - FEDBENCH

DBpedia

Drugbank
Jamendo KEGG

Shared

SWDF

NYTimes +
GeonamesLinkedMDB

ChEBI
FedBench RDF Molecules mined by MULDER

39

Michael Galkin, 29.03.2018 Moscow

FEDBENCH

MULDER EXPERIMENTS

Cross Domain (CD) Linked Data (LD) Life Science (LS) Complex (C)

�

�

�

� �
� �

�
�

�

�

�
� �

� � � � � �

� � � � � � �

�
� �

�

�
�

�

� �

� � �
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�

�
�

�
�

�

0.1
10.0

0.1
10.0

0.1
10.0

0.1
10.0

0.1
10.0

0.1
10.0

0.1
10.0

0.1
10.0

0.1
10.0

Direct
LDF

ANAPSID
FedX

M
ULDER H1.1

M
ULDER H1.2

M
ULDER H2

M
ULDER H3

M
ULDER H4

CD
1

CD
2

CD
3

CD
4

CD
5

CD
6

CD
7

LD
1

LD
2

LD
3

LD
4

LD
5

LD
6

LD
7

LD
8

LD
9

LD
10

LD
11 LS

1
LS

2
LS

3
LS

4
LS

5
LS

6
LS

7 C1 C2 C3 C4 C5 C6 C7 C8 C1
0

FedBench Query

Ex
ec

ut
io

n
Ti

m
e

(E
T)

 s
ec

 �
 lo

g
sc

al
e

40

Michael Galkin, 29.03.2018 Moscow

FEDBENCH
THROUGHPUT

MULDER EXPERIMENTS

Direct ANAPSID FedX MULDER

1

0 50 100 0 50 100 0 50 100 0 50 100
Completeness (%)

Ex
ec

ut
io

n
Ti

m
e

(E
T)

 s
ec

 �
 lo

g
sc

al
e

Cross Domain (CD) Linked Data (LD) Life Science (LS) Complex (C)

III

III IV

0 7 III

III IV

0 11 III

III IV

4 23 III

III IV

1 16

0 0 18 0 0 027 14

41

Michael Galkin, 29.03.2018 Moscow

MOLECULE TEMPLATES - LSLOD

LSLOD RDF Molecules mined by MULDER

42

Michael Galkin, 29.03.2018 Moscow

MULDER EXPERIMENTS - LSLOD 43

Michael Galkin, 29.03.2018 Moscow

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0
Time (sec)

#A
ns

we
rs

 P
ro

du
ce

d

A−SSGM A−SSGS MULDER

S2

0

100

200

300

400

1 2 3 4 5
Time (sec)
#A

ns
we

rs
 P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S3

0

10

20

0 1 2 3 4 5
Time (sec)

#A
ns

we
rs

 P
ro

du
ce

d

A−SSGM A−SSGS MULDER

S4

0

500

1000

1500

1 2
Time (sec)

#A
ns

we
rs

 P
ro

du
ce

d

A−SSGM A−SSGS MULDER

S5

0

10

20

0.06 0.07 0.08 0.09 0.10 0.11
Time (sec)

#A
ns

we
rs

 P
ro

du
ce

d

A−SSGM A−SSGS MULDER

S7

−0.50

−0.25

0.00

0.25

0.50

0.00 0.01 0.02 0.03 0.04
Time (sec)

#A
ns

we
rs

 P
ro

du
ce

d

A−SSGM A−SSGS MULDER

S8

MULDER EXPERIMENTS - LSLOD 44

Michael Galkin, 29.03.2018 Moscow

MULDER EXPERIMENTS - LSLOD 45

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN
3. M. Galkin, K. Endris, M. E. Vidal, S. Auer. SMJoin - A Multi-way Join Operator for SPARQL Queries.

SEMANTICS 2017

4. M. Galkin, M. E. Vidal, S. Auer. BatWAn: A Binary and Multi-way Query Plan Analyzer. Demo, Poster @
ISWC 2017)

46

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

47

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN
SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

Stars of two triple patterns

47

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN
SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

SELECT ?person ?city WHERE {
 ?person :name ?name .
 ?person :birthDate ?bday .
 ?person :birthPlace ?city .
 ?city :label ?label .
 ?city :population ?population .
 ?city :country :Germany .t6

t1

t2

t3

t4

t5

Stars of two triple patterns Stars of three triple patterns

47

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN
SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

SELECT ?person ?city WHERE {
 ?person :name ?name .
 ?person :birthDate ?bday .
 ?person :birthPlace ?city .
 ?city :label ?label .
 ?city :population ?population .
 ?city :country :Germany .t6

t1

t2

t3

t4

t5

Stars of two triple patterns Stars of three triple patterns

t1 t2

t3

t5 t6

t4

D1 D2 D3 D4 D5 D6

Bushy Tree Binary Join Plan

47

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN
SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

SELECT ?person ?city WHERE {
 ?person :name ?name .
 ?person :birthDate ?bday .
 ?person :birthPlace ?city .
 ?city :label ?label .
 ?city :population ?population .
 ?city :country :Germany .t6

t1

t2

t3

t4

t5

Stars of two triple patterns Stars of three triple patterns

t1 t2

t3

t5 t6

t4

D1 D2 D3 D4 D5 D6

t1 t2 t3 t5 t6t4

D1 D2 D3 D4 D5 D6

Bushy Tree Binary Join Plan Multi-way Join Plan

47

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

48

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

:Person1
[‘John Doe’,
‘Doe, John’,

‘JD’]
[’01-01-1980’] [:London]

MJM Head MJM Tail

tp1 tp2 tp3
Join variable
instantiation

?person ?name ?bday ?city

Source A Source B Source C

Multi-Join Mapping (MJM)- an  
internal SMJoin data structure that  
tracks results produced by the sources  
after evaluating triple patterns in  
a query BGP.

48

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

:Person1
[‘John Doe’,
‘Doe, John’,

‘JD’]
[’01-01-1980’] [:London]

MJM Head MJM Tail

tp1 tp2 tp3
Join variable
instantiation

?person ?name ?bday ?city

Source A Source B Source C

Multi-Join Mapping (MJM)- an  
internal SMJoin data structure that  
tracks results produced by the sources  
after evaluating triple patterns in  
a query BGP.

111

011 101 110

001 010 100

000

CBA

BA CA CB

A B C

3
of 1 bits

2

1

0

MJMs are organized and
indexed as a lattice.

48

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

49

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

MJM collection B : 010 (2)

3 {b:1} {c:1}

B

C

A

MJM collection C : 001 (1)

MJM collection A : 100 (4)

MJM collection BC : 011 (3)

MJM collection AC : 101 (5)

MJM collection AB : 110 (6)

MJM collection ABC : 111 (7)

1: [{y:2}]

1: [{z:5}]
{x:1, b:5}
insert

insert

probe

1 {a:2} {b:5}

1 {b:5}

1 {a:2}

3 {b:1}

3 {c:1} A tuple arrives from B

49

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SPARQL MULTI-WAY JOIN

MJM collection B : 010 (2)

3 {b:1} {c:1}

B

C

A

MJM collection C : 001 (1)

MJM collection A : 100 (4)

MJM collection BC : 011 (3)

MJM collection AC : 101 (5)

MJM collection AB : 110 (6)

MJM collection ABC : 111 (7)

1: [{y:2}]

1: [{z:5}]
{x:1, b:5}
insert

insert

probe

1 {a:2} {b:5}

1 {b:5}

1 {a:2}

3 {b:1}

3 {c:1}

1: [{y:2}, {z:5}, {y:3}]B

C

A

MJM collection C : 001 (1)

MJM collection B : 010 (2)

MJM collection A : 100 (4)

MJM collection BC : 011 (3)

MJM collection AC : 101 (5)

MJM collection AB : 110 (6)

MJM collection ABC : 111 (7)

1: [{y:2}]

1: [{z:5}]

1: [{y:3}]

1: [{y:2}, {z:5}]

{x:1, c:3}
insert probe

insert

{x:1, a:2, b:5, c:3}
output

3: [{y:1}, {z:1}]

1 {a:2} {b:5} {c:3}

1 {c:3}

1 {b:5}

1 {a:2}

3 {b:1} {c:1}

1 {a:2} {b:5}

3 {b:1}

3 {c:1}

A tuple arrives from B

A tuple arrives from C

49

Michael Galkin, 29.03.2018 Moscow

SMJOIN ROUTER

SPARQL MULTI-WAY JOIN

50

Michael Galkin, 29.03.2018 Moscow

SMJOIN ROUTER

SPARQL MULTI-WAY JOIN

t1 t2 t3

A B C

probe

insert A
BC B C

ABC AB AB

B
AC A C

ABC AB BC

The SMJoin Router manages a probing sequence in a special order that facilitates the fastest output rate

50

Michael Galkin, 29.03.2018 Moscow

SMJOIN ROUTER

SPARQL MULTI-WAY JOIN

t1 t2 t3

A B C

probe

insert A
BC B C

ABC AB AB

B
AC A C

ABC AB BC

The SMJoin Router manages a probing sequence in a special order that facilitates the fastest output rate

Index Table
001
010
011
100
101
110

C
B
BC
A
AC
AB

Source A: 100
001
010
011
100
101
110

C
B
BC
A
AC
AB

Sorted Probing
Sequence

011
010
001

BC
B
C

Insert Joinable
Results

111
110
101

ABC
AB
AC

Index = 100 + Prob_i

Source B: 010
001
010
011
100
101
110

C
B
BC
A
AC
AB

Sorted Probing
Sequence

101
100
001

AC
A
C

Insert Joinable
Results

111
110
011

ABC
AB
BC

Index = 010 + Prob_i

Index Table
001
010
011
100
101
110

C
B
BC
A
AC
AB

The SMJoin Router:

1. Selects only relevant MJM collections for the
probing sequence

2. Sorts MJM collections in a desc order by the
amount of 1 bits in a binary representation

3. Inserts a joinable result into an MJM
collections with the index: 
Insert_i = Source OR Probed

50

Michael Galkin, 29.03.2018 Moscow

SMJOIN EXPERIMENTS

▸ Dataset: DBpedia 2015-10, 800M triples, HDT format

▸ Compared systems: MULDER + SMJoin, nLDE, TPF Client

0

200

400

600

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
Query

Ex
ec

ut
io

n
Ti

m
e,

 m
s

SMJoin nLDE TPF
3800 ms

failed

EVALUATION
51

Michael Galkin, 29.03.2018 Moscow

SMJOIN EXPERIMENTS

EVALUATION

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Time, sec

C
om

pl
et

en
es

s,
 %

nLDE SMJoin

0

25

50

75

100

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Time, sec

C
om

pl
et

en
es

s,
 %

nLDE SMJoin

0

25

50

75

100

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time, sec

C
om

pl
et

en
es

s,
 %

nLDE SMJoin

0

25

50

75

100

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
Time, sec

C
om

pl
et

en
es

s,
 %

nLDE SMJoin

52

Michael Galkin, 29.03.2018 Moscow

SMJOIN

QUERY PLAN OPTIMIZATION

53

Michael Galkin, 29.03.2018 Moscow

SMJOIN

MOTIVATION
Query execution conditions may drastically affect plan’s performance 

54

Michael Galkin, 29.03.2018 Moscow

SMJOIN

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

MOTIVATION
Query execution conditions may drastically affect plan’s performance 

54

Michael Galkin, 29.03.2018 Moscow

SMJOIN

t1

t2

t3

t5NLJ

NLJ

NLJ

NLJ

t4 t1 t2 t3 t4 t5

SHJ SHJ

SHJ

SHJ

t1

t2

t3 t4 t5

NLJ

NLJ

SHJ

SHJ

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

MOTIVATION
Query execution conditions may drastically affect plan’s performance 

54

Michael Galkin, 29.03.2018 Moscow

SMJOIN

t1

t2

t3

t5NLJ

NLJ

NLJ

NLJ

t4 t1 t2 t3 t4 t5

SHJ SHJ

SHJ

SHJ

t1

t2

t3 t4 t5

NLJ

NLJ

SHJ

SHJ

t1 t2 t3 t4 t5

MJ

t1 t2 t3 t4 t5

SHJ MJ

SHJ

t1

t2

t3 t4 t5

MJ

NLJ

NLJ

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

0

0

MJ-only, (f)

timeout

NLJs + SHJs, (d)

Results
NLJs, (b) 12

timeout

195

timeout

243

ET, ms

12

MJ + NLJs, (h) 12

634

SHJs, (c)

0

Plan

MJ + SHJs, (g)

MOTIVATION
Query execution conditions may drastically affect plan’s performance 

54

Michael Galkin, 29.03.2018 Moscow

SMJOIN

APPROACH
Adaptive query plans that are able to combine binary and multi-way joins  

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

55

Michael Galkin, 29.03.2018 Moscow

SMJOIN

APPROACH
Adaptive query plans that are able to combine binary and multi-way joins  

t1 t2 t3 t4 t5

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

55

Michael Galkin, 29.03.2018 Moscow

SMJOIN

APPROACH
Adaptive query plans that are able to combine binary and multi-way joins  

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

55

Michael Galkin, 29.03.2018 Moscow

SMJOIN

APPROACH
Adaptive query plans that are able to combine binary and multi-way joins  

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

t1

t2

t3 t4 t5

SELECT DISTINCT * WHERE {
?s dct:subject ?o1. #Count: 115,259,581
?s dbo:director ?o2. #Count: 385,773
?s dbo:genre dbr:Concert. #Count: 98
?s dbo:artist dbr:Ana_Gabriel. #Count: 34
?s dbo:genre dbr:Ranchera. } #Count: 205

t1
t2
t3
t4
t5

55

Michael Galkin, 29.03.2018 Moscow

SMJOIN

EXPERIMENTS

Q1

(ET)^−1

Comp T

Mjoin
TPF Client

Q2

(ET)^−1

Comp T

Mjoin
TPF Client

Q3

(ET)^−1

Comp T

Mjoin
TPF Client

Q4

(ET)^−1

Comp T

Mjoin
TPF Client

Q6

(ET)^−1

Comp T

Mjoin
TPF Client

Q7

(ET)^−1

Comp T

Mjoin
TPF Client

Q8

(ET)^−1

Comp T

Mjoin
TPF Client

Q9

(ET)^−1

Comp T

Mjoin
TPF Client

Q10

(ET)^−1

Comp T

Mjoin
TPF Client

Q11

(ET)^−1

Comp T

Mjoin
TPF Client

▸ Dataset: DBpedia 2015-10, 800M triples, HDT format

▸ Compared systems: nLDE + SMJoin, TPF Client

56

Michael Galkin, 29.03.2018 Moscow

SJOIN

SEMANTIC JOIN OPERATOR
5. M. Galkin, D. Collarana, I. Traverso, M. E. Vidal, C. Lange, S. Auer. SJoin: A Semantic Join Operator to

Integrate Heterogeneous RDF Graphs. DEXA 2017

6. M. Galkin, M. E. Vidal. Towards a Multi-way Similarity Join Operator. ADBIS 2017

7. M. Galkin, M. E. Vidal. Towards a Multi-way Similarity Join Operator. Submitted to the Journal of
Applied Mathematics and Computer Science (AMCS Journal)

57

Michael Galkin, 29.03.2018 Moscow

SJOIN

MOTIVATING EXAMPLE

DBpedia

drugbank:DB00316 drugbank:DB01050

dbr:Paracetamol dbr:Acetaminophen dbr:Ibuprofen

label

Ibuprofen

15687-27-1
CAS

15687-27-1

rdfs:label

dbo:casNumber
103-90-2

dbr:Paracetamol

N02BE01

103-90-2

atcCode

rdfs:label

dbo:casNumber

rdfs:label dbo:pageRedirect
N-(4-hydroxy

phenyl)ethanamide

2-[4-(2-methylpropyl)
phenyl]propanoic acid

chemicalIupacName

dbo:iupacName

(RS)-2-(4-(2-Methyl
propyl)phenyl)pro

panoic acid

Ibuprofen@enAcetaminophen
@en

Paracetamol@en
dbo:iupacName

dbo:casNumber

N-(4-hydroxy
phenyl) acetamide

chemicalIupacName
Acetaminophen

label

103-90-2
CAS

Drugbank

Equivalent RDF entities are encoded using heterogeneous
vocabularies (schemas) in different sources

58

Michael Galkin, 29.03.2018 Moscow

SJOIN

MOTIVATING EXAMPLE
Equivalent RDF entities are encoded using heterogeneous
vocabularies (schemas) in different sources

‣ Entities from Drugbank and DBpedia are syntactically
different but semantically equivalent

‣ DB00316 is 1-to-2 same as dbr:Paracetamol and
dbr:Acetaminophen

‣ DB01050 equals 1-to-1 to dbr:Ibuprofen

59

Michael Galkin, 29.03.2018 Moscow

SJOIN

PROBLEM DEFINITION

Given φ(G), φ(D) and φ(F) as sets of RDF molecules where
MG ⊂φ(G), MD ⊂φ(D), MF ⊂φ(F) are molecules,  
find a homomorphism

60

Michael Galkin, 29.03.2018 Moscow

SJOIN

PROBLEM DEFINITION

Given φ(G), φ(D) and φ(F) as sets of RDF molecules where
MG ⊂φ(G), MD ⊂φ(D), MF ⊂φ(F) are molecules,  
find a homomorphism

dbr:Ibuprofen DB01050

M2a
M2b

M3a M3b

60

Michael Galkin, 29.03.2018 Moscow

SJOIN

PROBLEM DEFINITION

Given φ(G), φ(D) and φ(F) as sets of RDF molecules where
MG ⊂φ(G), MD ⊂φ(D), MF ⊂φ(F) are molecules,  
find a homomorphism

SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs 3

R2) Able to identify joinable tuples leveraging semantic relatedness between
RDF graphs. R3) Capable of performing perfect matching for one-to-one in-
tegration, and fuzzy conditional matching for integrating groups of N entities
from one graph with M entities from another knowledge graph. R4) Support of
a blocking operation mode for batch processing, and a non-blocking mode for
on-demand real time cases whenever results are expected incrementally.

We present SJoin – a semantic join operator which meets these requirements.
The contributions of this article include: 1) Definition and description of SJoin, a
semantic join operator for integrating heterogeneous RDF graphs. 2) Algorithms
and complexity study of a blocking SJoin for 1� 1 integration and non-blocking
SJoin for the N � M similarity case. 3) An extensive evaluation that demon-
strates benefits of SJoin in terms of efficiency, effectiveness and completeness
over time in various heterogeneity conditions and confidence levels.

The article is organized as follows: The problem addressed in this work is
clearly defined in Section 2. Section 3 presents the SJoin operator, as well as the
blocking and non-blocking physical implementations, as solutions for detecting
semantically equivalent entities in RDF knowledge graphs. Results from our
experimental study are reported on Section 4. An overview of traditional binary
joins and similarity joins as a related work is analyzed in Section 5. Finally, we
sum up the lessons learned and outline future research directions in Section 6.

2 Problem Statement

In this work, we tackle the problem of identifying semantically equivalent RDF
molecules from RDF graphs. Given an RDF graph G, we call a subgraph M

of G an RDF molecule [4] iff the RDF triples of M = {t1, . . . , tn} share the
same subject, i.e., 8 i, j 2 {1, .., n} (subject(ti) = subject(tj)). An RDF molecule
can be represented as a pair M = (R, T), where R corresponds to the URI (or
blank node) of the molecule subject, and T is a set of pairs p=(prop,val) such
that the triple (R,prop,val) belongs to M . We name R and T the head and
the tail of the RDF molecule M, respectively. For example, an RDF molecule
of a drug Paracetamol is (dbr:Paracetamol, {(rdfs:label,"Paracetamol@en"),
(dbo:casNumber,"103-90-2"), (dbo:iupacName,"N-(4-hydroxyphenyl)ethanamide")}).
An RDF graph G can be described in terms of its RDF molecules as follows:

�(G) = {M = (R, T)|t = (R, prop, val) 2 G and (prop, val) 2 T} (1)

Definition 1 (Problem of Semantically Equivalent RDF Graphs). Given

sets of RDF molecules �(G), �(D), and �(F), and an RDF molecule Me in

�(F) which corresponds to an entity e represented by different RDF molecules

MG and MD in �(G) and �(D), respectively. The problem of identifying seman-

tically equivalent entities between sets of RDF molecules �(G) and �(D) consists

of providing an homomorphism ✓ : �(G) [�(D) ! 2�(F)
, such that if two RDF

molecules MG and MD represent the RDF molecule Me, then Me 2 ✓(MG)
and Me 2 ✓(MD); otherwise, ✓(MG) 6= ✓(MD).dbr:Ibuprofen DB01050

M2a
M2b

M3a M3b

M1a

M2c

M3c

dbr:Ibuprofen

DB01050
M1a

!

!

M2a

M2b
M2c

!

!

M3a

M3b
M3c

!

!

60

Michael Galkin, 29.03.2018 Moscow

SJOIN

APPROACH

‣ SJoin: a semantic join operator that implement the
homomorphism 

‣ Blocking SJoin – for 1-1 weighted perfect matching of RDF
molecules  

‣ Non-Blocking SJoin – for N-M matching of RDF molecules

61

Michael Galkin, 29.03.2018 Moscow

SJOIN

RESOURCE SIMILARITY MOLECULE

RSM is a data structure that maps a molecule from graph A to most
similar molecules from graph B

 
RSM = (URIiA, TailiA) [(URIjB,TailjB),(URIkB, TailkB)] 

Tail = [(prop,val),(prop,val),(prop,val)]  
 
ExampleRSM = (DB00316,T) [(dbr:Paracetamol,T),
(dbr:Acetaminophen,T)]

DBpedia

drugbank:DB00316 drugbank:DB01050

dbr:Paracetamol dbr:Acetaminophen dbr:Ibuprofen

label

Ibuprofen

15687-27-1
CAS

15687-27-1

rdfs:label

dbo:casNumber
103-90-2

dbr:Paracetamol

N02BE01

103-90-2

atcCode

rdfs:label

dbo:casNumber

rdfs:label dbo:pageRedirect
N-(4-hydroxy

phenyl)ethanamide

2-[4-(2-methylpropyl)
phenyl]propanoic acid

chemicalIupacName

dbo:iupacName

(RS)-2-(4-(2-Methyl
propyl)phenyl)pro

panoic acid

Ibuprofen@enAcetaminophen
@en

Paracetamol@en
dbo:iupacName

dbo:casNumber

N-(4-hydroxy
phenyl) acetamide

chemicalIupacName
Acetaminophen

label

103-90-2
CAS

Drugbank

62

Michael Galkin, 29.03.2018 Moscow

SJOIN

BLOCKING SJOIN

1. Load: Extract all RDF molecules from graphs
2. Insert:

1. Compute a similarity matrix among molecules with a given
threshold

2. Sort most similar molecules for each RSM
3. Probe: Compute 1-1 perfect matching. Blocking!

(R1A,T1A)[]
(R2A,T2A)[]
(R3A,T3A)[]

(R1B,T1B)[]
(R2B,T2B)[]
(R3B,T3B)[]

insert (R2A,T2A)
(R3A,T3A)

(R1B,T1B)
(R2B,T2B)
(R3B,T3B)

(R1A,T1A) (R2B,T2B)
(R2A,T2A) (R3B,T3B)
(R3A,T3A) (R1B,T1B)

Dataset A

Dataset B

simf γ

(R1A,T1A)

insert

insert 1-1 Perfect Matching

Similarity Partitioning Similarity Probing

63

Michael Galkin, 29.03.2018 Moscow

SJOIN

1-1 PERFECT MATCHING

If RSMiA has the most similar molecule MjB, and RSMjB has the
most similar molecule MiA, then yield a result (MiA,MjB)

6 Mikhail Galkin et al.

(RiA,TiA)[(RjB,TjB),…,(RkB,TkB)] (RjB,TjB)[(RiA,TiA),…,(RmA,TmA)]

List of RSMA List of RSMB

(RiA,TiA) (RjB,TjB)

(a) 1-1 matching from the bipartite graph of RMS

(RaA,TaA) (RbB,TbB)

(RmA,TmA) (RnB,TnB)

n pairs

(RiA,TiA) (RjB,TjB)

(b) Matched pairs

Fig. 3: 1-1 Weighted Perfect Matching. (a) The matching is identified from
the lists of RSMA and RSMB ; RDF molecules MiA=(RiA,TiA) and MjB=
(RjB ,TjB) are semantically equivalent whenever RiA and RjB are reciprocally
the most similar RDF molecules according to Simf .

Algorithm 2: 1-1 Weighted Perfect Matching of RSMs bipartite graph
Data: List of RSMA, List of RSMB

Result: List of pairs LP = ((RiA, TiA), (RjB , TjB))
1 for RSMiA 2 List of RSMA do

2 RSMiA = ((RiA, TiA)[(RjB , TjB), . . . , (RkB , TkB)]) ; // Ordered Set
3 for (RjB , TjB) 2 tail(RSMiA) do

4 RSMjB Find in the List of RSMB ;
5 RSMjB = ((RjB , TjB)[(RlA, TlA), . . . , (RzA, TzA)]) ; // Ordered Set
6 if (RlA, TlA) = (RiA, TiA) and (RiA, TiA) 62 LP then

7 LP LP + ((RiA, TiA), (RjB , TjB)) ; // Add to result
8 else

9 for (RlA, TlA 2 tail(RSMjB) do

10 find the position of (RiA, TiA) ;
11 return LP

max(Simf (MiA, RSMB)) = max(Simf (MjB , RSMA)) = Simf (MiA,MjB).
That is, for a given molecule MiA, there is no molecule in the list of RSMA which
has a similarity score higher than Simf (MiA,MjB) and vice versa. Algorithm 2
describes how perfect pairs are created; Fig. 3 illustrates the algorithm.

Traversing the List of RSMA, the algorithm iterates over each RSMiA. Then,
the tail of RSMiA, i.e., an ordered set of highly similar molecules, is extracted.
The first molecule of the tail RSMjB corresponds to the most similar molecule
from the List of RSMB . The algorithm searches for RSMjB in the List of RSMB

and examines whether the molecule (RiA, TiA) is the first one in the tail of
RSMjB . If this condition holds and (RiA, TiA) is not already matched with
another RSM, then the pair ((RiA, TiA), (RjB , TjB)) is identified as a perfect
pair and is appended to the result list of pairs LP (cf. Fig. 3a). If false, then
the algorithm finds the first occurrence of (RiA, TiA) in the tail of RSMjB and
appends the result pair to LP . When all RSMs are matched, the algorithm
yields the list of perfectly matched pairs (cf. Fig. 3b).

64

Michael Galkin, 29.03.2018 Moscow

SJOIN

NON-BLOCKING SJOIN

1. Load: RDF molecules arrive one by one
2. Probe:

1. Compute a similarity score between MiA and arrived molecules MB
2. Yield a result if sim(MiA, MjB) ≥ 𝛾

3. Insert: Put MiA in the list of arrived molecules from the graph A

65

(R1A,T1A)[] (R1B,T1B)[]
(R2B,T2B)[]

insert

(R1A,T1A) (R2B,T2B)

probe

simf γ

Dataset A Dataset B

Similarity Partitioning / Similarity Probing

(R1A,T1A)(R1A,T1A)

(R1A,T1A)[]
(R2A,T2A)[]

(R1B,T1B)[]
(R2B,T2B)[]
(R3B,T3B)[]

insert

(R1A,T1A) (R2B,T2B)
(R3B,T3B) (R2A,T2A)probe

simf γ

Dataset A Dataset B

Similarity Partitioning / Similarity Probing

(R3B,T3B)

Michael Galkin, 29.03.2018 Moscow

SJOIN

TIME COMPLEXITY ANALYSIS

‣ Partitioning: similarity matrix computation 

‣ Sorting: QuickSort 

‣ Matching: SJoin or Hungarian algorithms

66

8 Mikhail Galkin et al.

Algorithm 3: The Non-Blocking SJoin operator executes both Similarity
Partitioning and Probing steps as soon as an RDF molecule arrives from
an RDF graph.

Data: Dataset �(DA), Simf , �

Result: List of pairs LP = ((RiA, TiA), (RjB , TjB))
1 while getMolecule(�(DA)) do

2 MiA getMolecule(�(DA)) ;
3 RiA head(MiA), TiA tail(MiA) ; // Get URI, tail
4 for RSMjB 2 List of RSMB do

5 RSMjB = ((RjB , TjB)[]) ;
6 RjB head(head(RSMjB)) ; // Get URI
7 TjB tail(head(RSMjB) ; // Get tail
8 if Simf (RiA, RjB) � � then // Probe
9 LP LP + ((RiA, TiA), (RjB , TjB)) ;

10 head(RSMiA) MiA, tail(RSMiA) [] ;
11 List of RSMA List of RSMA +RSMiA ; // Insert

12 return LP

Table 1: The SJoin Time Complexity. Results for the steps of Partitioning,
Sorting, and Matching, where n is the number of RDF molecules.
Stage Blocking SJoin Complexity Non-Blocking SJoin Complexity

Partitioning O(n2 ·O(Simf)) O(n2 ·O(Simf))
Sorting O(n log n)
Matching O(n3)
Overall O(n2 ·O(Simf)) +O(n3) O(n2 ·O(Simf))

similarity score order. The applicable merge sort and heapsort algorithms have
O(n log n) asymptotic complexity. The 1-1 Weighted Perfect Matching compo-
nent has O(n3) complexity in the worst case according to the Algorithm 2.
However, the Hungarian algorithm [7], a standard approach for 1-1 weighted
perfect matching, converges to the same O(n3) complexity. Partitioning, sorting
and perfect matching are executed sequentially. Therefore, the overall complexity
conforms to the sum of complexities, i.e., O(n2 ·O(Simf)) +O(n log n) +O(n3)
which equals to O(n2 ·O(Simf)) +O(n3). We thus deduce that the SJoin com-
plexity depends on the complexity of a chosen similarity measure whereas the
lowest achievable order of complexity is limited to O(n3).

The complexity of the non-blocking SJoin operator stems from the analysis
of the Algorithm 3. The most expensive step of the algorithm is to compute a
similarity score between an RSMiA and RSMs in the List of RSMB . Applied to
both �(DA) and �(DB) the complexity converges to O(n2 ·O(Simf)).

4 Empirical Study

An empirical evaluation is conducted to study the efficiency and effectiveness of
SJoin in blocking and non-blocking conditions on RDF graphs from DBpedia and

Michael Galkin, 29.03.2018 Moscow

SJOIN

MULTI-WAY SIMILARITY JOIN OPERATOR
67

t9

t10

t8D8

D9

D10

 ?a: <Creedence_Clearwater_Revival>, ?ab: <The_Blue_Velvets>

 ?a: <CCR>, ?o1: <The_Blue_Velvets>
 ?a: <CCR>, ?o1: <The_Golliwogs>

 ?a: <Creedence_Clearwater_Revival>, ?o2: <The_Blue_Velvets>
 ?a: <Creedence_Clearwater_Revival>, ?o2: <The_Golliwogs>

no result

‣ Input: RDF molecules
‣ CCR and

Creedence_Clearwater_
Revival refer to the
same entity

‣ Traditional ops - no join

Michael Galkin, 29.03.2018 Moscow

SJOIN

MULTI-WAY SIMILARITY JOIN OPERATOR
67

t9

t10

t8D8

D9

D10

 ?a: <Creedence_Clearwater_Revival>, ?ab: <The_Blue_Velvets>

 ?a: <CCR>, ?o1: <The_Blue_Velvets>
 ?a: <CCR>, ?o1: <The_Golliwogs>

 ?a: <Creedence_Clearwater_Revival>, ?o2: <The_Blue_Velvets>
 ?a: <Creedence_Clearwater_Revival>, ?o2: <The_Golliwogs>

no result

t9

t10

t8D8

D9

D10

 ?a: <Creedence_Clearwater_Revival>, ?ab: <The_Blue_Velvets>

 ?a: <CCR>, ?o1: <The_Blue_Velvets>
 ?a: <CCR>, ?o1: <The_Golliwogs>

 ?a: <Creedence_Clearwater_Revival>, ?o2: <The_Blue_Velvets>
 ?a: <Creedence_Clearwater_Revival>, ?o2: <The_Golliwogs>

{?a:<CCR>, ?ab:<The_Blue_Velvets>,
 ?o1:<The_Blue_Velvets>, ?o2: <The_Blue_Velvets> }
{?a:<CCR>, ?ab:<The_Blue_Velvets>,
 ?o1:<The_Golliwogs>, ?o2: <The_Blue_Velvets>}
{?a:<CCR>, ?ab:<The_Blue_Velvets>,
 ?o1:<The_Blue_Velvets>, ?o2: <The_Golliwogs>}
{?a:<CCR>, ?ab:<The_Blue_Velvets>,
 ?o1:<The_Golliwogs>, ?o2: <The_Golliwogs>}

‣ Input: RDF molecules
‣ CCR and

Creedence_Clearwater_
Revival refer to the
same entity

‣ Traditional ops - no join

Michael Galkin, 29.03.2018 Moscow

SJOIN

MULTI-WAY SIMILARITY JOIN OPERATOR (MSIMJOIN)
68

B

A

C C

B

A
{x:<resource1>}

insert

probing collections

D

E E

D AC

AE

BC

AD

AB

CE

DE

CD

BD

BE

ACD

ABC

ABD

ACE

ABE

ADE

CDE

BCD

BDE

BCE

ABCD

ABCE

ABDE

ACDE

BCDE

Main Collections Auxiliary Collections

ABCDE

Output

insert insert

collection to insert result collection

probe

Semantic
similarity
function

Ontology

Michael Galkin, 29.03.2018 Moscow

SJOIN

MULTI-WAY SIMILARITY JOIN OPERATOR (MSIMJOIN)
69

B

A

C C

B

A

{x:<resource2>}
insert

D

E E

D AC

AE

BC

AD

AB

CE

DE

CD

BD

BE

ACD

ABC

ABD

ACE

ABE

ADE

CDE

BCD

BDE

BCE

ABCD

ABCE

ABDE

ACDE

BCDE

Main Collections Auxiliary Collections

ABCDE

Output

insert insert

probe

Semantic
similarity
function

Ontology

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

QUERY EXECUTION

70

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

‣ Experiment 1: 500 DBpedia molecules of type Person, with randomly
deleted/edited triples

‣ Experiment 2: 500 and 1000 molecules from DBpedia and Wikidata of
type Person

EVALUATION
71

SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs 9

Table 2: Benchmark Description. RDF datasets used in the evaluation.
Experiment 1: People Experiment 2: People

DBpedia D1 DBpedia D2 DBpedia Wikidata DBpedia Wikidata
Molecules 500 500 500 500 1000 1000
Triples 17,951 17,894 29,263 16,307 54,590 29,138

Wikidata We assess the following research questions: RQ1) Does blocking SJoin
integrate RDF graphs more efficiently and effectively compared to the state of
the art? RQ2) What is the impact of threshold values on the completeness of
a non-blocking SJoin? RQ3) What is the affect of a similarity function in the
SJoin results? The experimental configuration is as follows:

Benchmark: Experiment 1 is executed against a dataset of 500 molecules9
of type Person extracted from the live version of DBpedia (February 2017).
Based on the original molecules, we created two sets of molecules by randomly
deleting or editing triples in the two sets. Sharing the same DBpedia vocabulary,
Experiment 1 datasets have a higher resemblance degree compared to Experi-
ment 2. Experiment 2 employs subsets of DBpedia and Wikidata of the Person
class. Assessing SJoin in the higher heterogeneity settings, we sampled datasets
of 500 and 1000 molecules varying triples count from 16K up to 55K10. Table 2
provides basic statistics on the experimental datasets. DBpedia D1 and D2 refer
to the dumps of 500 molecules. Further, the dumps of 500 and 1000 molecules
for Experiment 2 are extracted from DBpedia and Wikidata.

Baseline: Gold standards for blocking operators comparison include the
original DBpedia Person descriptions (Experiment 1) and owl:sameAs links be-
tween DBpedia and Wikidata (Experiment 2). We compare SJoin with a Hash
Join operator. For a fair comparison, the Hash Join was extended to support sim-
ilarity functions at the Probing stage. That is, blocking SJoin is compared against
blocking similarity Hash Join and non-blocking SJoin is evaluated against non-
blocking Symmetric Hash Join. The Gold standard for evaluating non-blocking
operators is comprised of the precomputed amounts of pairs which similarity
score exceeds a predefined threshold; gold standards are computed off line.

Metrics: We report on execution time (ET in secs) as the elapsed time
required by the SJoin operator to produce all the answers. Furthermore, we
measure Precision, Recall and report F1-measure during the experiments with
blocking operators. Precision is the fraction of RDF molecules that has been
identified and integrated (M) that intersects with the Gold Standard (GS), i.e.,
Precision = |M\GS|

|M | . Recall corresponds to the fraction of the identified similar
molecules in the Gold Standard, i.e., Recall = |M\GS|

|GS| . Comparing non-blocking
operators, we measure Completeness over time, i.e., a fraction of results produced
at a certain time stamp. The timeout is set to one hour (3,600 seconds), the
operators results are checked every second. Ten thresholds in the range [0.1 : 1.0]
and step 0.1 were applied in Experiment 1. Five thresholds in the range [0.1 : 0.5]

9
https://github.com/RDF-Molecules/Test-DataSets/tree/master/DBpedia-People/20160819

10
https://github.com/RDF-Molecules/Test-DataSets/tree/master/DBpedia-WikiData/operators_evaluation

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

‣ Experiment 1: 500 DBpedia molecules of type Person, with randomly
deleted/edited triples

‣ Experiment 2: 500 and 1000 molecules from DBpedia and Wikidata of
type Person

EVALUATION
71

SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs 9

Table 2: Benchmark Description. RDF datasets used in the evaluation.
Experiment 1: People Experiment 2: People

DBpedia D1 DBpedia D2 DBpedia Wikidata DBpedia Wikidata
Molecules 500 500 500 500 1000 1000
Triples 17,951 17,894 29,263 16,307 54,590 29,138

Wikidata We assess the following research questions: RQ1) Does blocking SJoin
integrate RDF graphs more efficiently and effectively compared to the state of
the art? RQ2) What is the impact of threshold values on the completeness of
a non-blocking SJoin? RQ3) What is the affect of a similarity function in the
SJoin results? The experimental configuration is as follows:

Benchmark: Experiment 1 is executed against a dataset of 500 molecules9
of type Person extracted from the live version of DBpedia (February 2017).
Based on the original molecules, we created two sets of molecules by randomly
deleting or editing triples in the two sets. Sharing the same DBpedia vocabulary,
Experiment 1 datasets have a higher resemblance degree compared to Experi-
ment 2. Experiment 2 employs subsets of DBpedia and Wikidata of the Person
class. Assessing SJoin in the higher heterogeneity settings, we sampled datasets
of 500 and 1000 molecules varying triples count from 16K up to 55K10. Table 2
provides basic statistics on the experimental datasets. DBpedia D1 and D2 refer
to the dumps of 500 molecules. Further, the dumps of 500 and 1000 molecules
for Experiment 2 are extracted from DBpedia and Wikidata.

Baseline: Gold standards for blocking operators comparison include the
original DBpedia Person descriptions (Experiment 1) and owl:sameAs links be-
tween DBpedia and Wikidata (Experiment 2). We compare SJoin with a Hash
Join operator. For a fair comparison, the Hash Join was extended to support sim-
ilarity functions at the Probing stage. That is, blocking SJoin is compared against
blocking similarity Hash Join and non-blocking SJoin is evaluated against non-
blocking Symmetric Hash Join. The Gold standard for evaluating non-blocking
operators is comprised of the precomputed amounts of pairs which similarity
score exceeds a predefined threshold; gold standards are computed off line.

Metrics: We report on execution time (ET in secs) as the elapsed time
required by the SJoin operator to produce all the answers. Furthermore, we
measure Precision, Recall and report F1-measure during the experiments with
blocking operators. Precision is the fraction of RDF molecules that has been
identified and integrated (M) that intersects with the Gold Standard (GS), i.e.,
Precision = |M\GS|

|M | . Recall corresponds to the fraction of the identified similar
molecules in the Gold Standard, i.e., Recall = |M\GS|

|GS| . Comparing non-blocking
operators, we measure Completeness over time, i.e., a fraction of results produced
at a certain time stamp. The timeout is set to one hour (3,600 seconds), the
operators results are checked every second. Ten thresholds in the range [0.1 : 1.0]
and step 0.1 were applied in Experiment 1. Five thresholds in the range [0.1 : 0.5]

9
https://github.com/RDF-Molecules/Test-DataSets/tree/master/DBpedia-People/20160819

10
https://github.com/RDF-Molecules/Test-DataSets/tree/master/DBpedia-WikiData/operators_evaluation

‣ Blocking operator metrics:
Partitioning time
Probing time
F1 score

‣ Non-blocking operator metric:
Completeness over time

‣ Variables:
Join operator
Similarity function (GADES, Jaccard)
Threshold value
Molecules

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

EXPERIMENT 1 - BLOCKING - GADES
72

10 Mikhail Galkin et al.

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

ET
, s

ec

sjoin_partitioning sjoin_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(a) SJoin performance

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

ET
, s

ec

hash_partitioning hash_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(b) Hash Join performance

Fig. 5: Experiment 1 (GADES) with blocking operators. The partitioning

bar shows the time taken to partition the molecules in RSMs, probing indicates
the time required for 1-1 weighted perfect matching. Black line chart on the right
axis denotes F1 score. (a) SJoin demonstrates higher F1 score while consuming
more time for perfect matching. (b) Baseline Hash Join demonstrates less than
0.25 F1 score even on lower thresholds spending less time on probing.

were evaluated in the Experiment 2 as no pair in the sampled datasets has a
GADES similarity score higher than 0.5.

Implementation: Both blocking and non-blocking SJoin operators are im-
plemented in Python 2.7.1011. Baseline improved Hash Joins are implemented
in Python as well12. The experiments were executed on a Ubuntu 16.04 (64
bits) Dell PowerEdge R805 server, AMD Opteron 2.4GHz CPU, 64 cores, 256GB
RAM. We evaluated two similarity functions: GADES [10] and Semantic Jaccard
(SemJaccard) [1]. GADES relies on semantic descriptions encoded in ontologies
to determine relatedness, while SemJaccard requires the materialization of im-
plicit knowledge and mappings. Evaluating schema heterogeneity of DBpedia
and Wikidata in Experiment 2 the similarity function is fixed to GADES.

4.1 DBpedia – DBpedia People

Experiment 1 evaluates the performance and effectiveness of blocking and non-
blocking SJoin compared to respective Hash Join implementations. The testbed
includes two split DBpedia dumps with semantically equivalent entities but non-
matching resource URIs and randomly distributed properties; GADES and Sem-
Jaccard similarity functions. That is, both graphs are described in terms of one
DBpedia ontology. Fig. 5 visualizes the results obtained when applying GADES
semantic similarity function in order to identify a perfect matching of graphs
resources, i.e., in blocking conditions. SJoin exhibits better F1 score up to very
11 https://github.com/RDF-Molecules/operators/tree/master/mFuhsion
12 https://github.com/RDF-Molecules/operators/tree/master/baseline_ops

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

EXPERIMENT 1 - BLOCKING - JACCARD
73

12 Mikhail Galkin et al.

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

ET
, s

ec

sjoin_partitioning sjoin_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(a) SJoin performance

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

ET
, s

ec

hash_partitioning hash_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(b) Hash Join performance

Fig. 7: Experiment 1 (SemJaccard) with blocking operators. (a) SJoin
takes less time to compute similarity scores while F1 score quickly deteriorates
after threshold 0.5. (b) Baseline Hash Join in most cases consumes more time
and produces less reliable matchings.

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.4 # triples: 50857

(a) T = 0.4, GADES

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.4 # triples: 486

(b) T = 0.4, Jaccard

Fig. 8: Experiment 1 with fixed threshold. GADES identifies two orders of
magnitude more results than Jaccard while SJoin still achieves full completeness.

operators require less time for partitioning and take less time for probing stages.
That is, due to the heterogeneous nature of the compared datasets, SemJaccard
is not able to produce similarity scores higher than 0.4. On the other hand,
SemJaccard simplicity leads to significant deterioration of the F1 score already
at low thresholds, i.e., 0.3-0.4.

Fig. 8 illustrates the difference in elapsed time and achieved completeness of
SJoin and Hash Join applying GADES or SemJaccard similarity functions. Evi-
dently, SemJaccard outputs fewer tuples even on lower thresholds, e.g., 486 pairs
at 0.4 threshold against 50,857 pairs by GADES. We therefore demonstrate that
plain set similarity measures as SemJaccard that consider only an intersection
of exactly same triples are ineffective in integrating heterogeneous RDF graphs.

4.2 DBpedia - Wikidata People

The distinctive feature of the experiment consists in completely different vo-
cabularies used to semantically describe the same people. Therefore, traditional

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

EXPERIMENT 1 - NON-BLOCKING - GADES
74

SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs 11

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.1 # triples: 166573

(a) T = 0.1

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.3 # triples: 108922

(b) T = 0.3

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.5 # triples: 15148

(c) T=0.5

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.8 # triples: 406

(d) T=0.8

Fig. 6: Experiment 1 (GADES) with non-blocking operators. SJoin pro-
duces complete results at all threholds in contrast to Hash Join.

high 0.9 threshold value. Moreover, the effectiveness of more than 80% is ensured
up to 0.6 threshold value whereas Hash Join barely reaches 25% even on lower
thresholds. The partitioning time is constant for both operators but Hash Join
performs the partitioning slower due to the application of a hash function to
all incoming molecules. However, high effectiveness of SJoin is achieved at the
expense of time efficiency. SJoin has to complete a 1-1 perfect matching algo-
rithm against a large 500x500 matrix whereas Hash Join performs the perfect
matching three times but for smaller matrices equal to the size of its buckets,
e.g., about 166x166 for three buckets which is faster due to the cubic complexity
of the weighted perfect matching algorithm.

Fig. 6 shows the results of the evaluation of non-blocking operators with
GADES. SJoin outperforms the baseline Hash Join in terms of completeness
over time in all four cases with the threshold in the range 0.1-0.8. Fig. 6a demon-
strates that the SJoin operator is capable of producing 100% of results within
the timeframe whereas the Hash Join operator outputs only about 10% of the
expected tuples. In Fig. 6b SJoin achieves the full completeness even faster. In
Fig. 6c both operators finish after 18 minutes, but SJoin retains full complete-
ness while Hash Join reaches only 35%. Finally, with the 0.8 threshold in Fig. 6d
Hash Join performs very fast but still struggles to attain the full completeness,
while SJoin takes more time but sustainably achieves the full completeness. One
of the reasons why Hash Join performs worse is its hash function which does not
consider semantics encoded in the molecules descriptions. Therefore, the hash
function partitions RDF molecules into buckets almost randomly, while it was
originally envisioned to place similar entities in the same buckets.

Fig. 7 presents the efficiency and effectiveness of blocking SJoin and Hash Join
when applying SemJaccard similarity function. As an unsophisticated measure,

With GADES SJoin
is able to
complete
integration in all
threshold values.

Threshold reduces
the amount of
compared
molecules, hence
join converges
faster.

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

EXPERIMENT 1 - NON-BLOCKING - GADES VS JACCARD
75

‣ Fixed threshold: 0.4
‣ GADES identifies 100x more results than Jaccard
‣ SJoin completes in all cases

12 Mikhail Galkin et al.

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

ET
, s

ec

sjoin_partitioning sjoin_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(a) SJoin performance

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

ET
, s

ec

hash_partitioning hash_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(b) Hash Join performance

Fig. 7: Experiment 1 (SemJaccard) with blocking operators. (a) SJoin
takes less time to compute similarity scores while F1 score quickly deteriorates
after threshold 0.5. (b) Baseline Hash Join in most cases consumes more time
and produces less reliable matchings.

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.4 # triples: 50857

(a) T = 0.4, GADES

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.4 # triples: 486

(b) T = 0.4, Jaccard

Fig. 8: Experiment 1 with fixed threshold. GADES identifies two orders of
magnitude more results than Jaccard while SJoin still achieves full completeness.

operators require less time for partitioning and take less time for probing stages.
That is, due to the heterogeneous nature of the compared datasets, SemJaccard
is not able to produce similarity scores higher than 0.4. On the other hand,
SemJaccard simplicity leads to significant deterioration of the F1 score already
at low thresholds, i.e., 0.3-0.4.

Fig. 8 illustrates the difference in elapsed time and achieved completeness of
SJoin and Hash Join applying GADES or SemJaccard similarity functions. Evi-
dently, SemJaccard outputs fewer tuples even on lower thresholds, e.g., 486 pairs
at 0.4 threshold against 50,857 pairs by GADES. We therefore demonstrate that
plain set similarity measures as SemJaccard that consider only an intersection
of exactly same triples are ineffective in integrating heterogeneous RDF graphs.

4.2 DBpedia - Wikidata People

The distinctive feature of the experiment consists in completely different vo-
cabularies used to semantically describe the same people. Therefore, traditional

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

EXPERIMENT 2 - BLOCKING - GADES
76

SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs 13

(a) GADES distribution

0

1000

2000

3000

4000

0.1 0.2 0.3 0.4 0.5
Threshold

ET
, s

ec

sjoin_partitioning sjoin_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(b) SJoin

0

200

400

600

800

0.1 0.2 0.3 0.4 0.5
Threshold

ET
, s

ec

hash_partitioning hash_probing

F1 score

0.00

0.25

0.50

0.75

1.00

F1
 s

co
re

(c) Hash Join

Fig. 9: Experiment 2 (GADES) with blocking operators, 500 molecules.
(a) The distribution of GADES similarity scores shows that there are few pairs
which score exceeds 0.4 threshold. (b) SJoin requires more time but achieves
more than 0.9 F1 score until T0.3. (c) Baseline Hash Join operates faster but
achieves less than 0.25 F1 accuracy.

joins and set similarity joins, e.g., Jaccard, are not applicable. We evaluate the
performance of SJoin employing GADES semantic similarity measure.

Fig. 9 reports the efficiency and effectiveness of SJoin compared to Hash Join
in the 500 molecules setup. Fig. 9a justifies the range of selected thresholds as
only a few number of pairs have a similarity score higher than 0.5. Blocking
SJoin manages to achieve higher F1 score (max 95%) up to 0.3 threshold value,
but requires significantly more time to accomplish the perfect matching.

Results of non-blocking SJoin and Hash Join executed against 500 and 1000
molecules configurations are reported on Fig. 10. The observed behavior of these
operators resembles the one in Experiment 1, i.e., SJoin outputs complete results
within a predefined time frame, while Hash Join barely achieves 40% complete-
ness in the case with a relatively high threshold 0.4 and small number of outputs.

Analyzing the observed empirical results, we are able to answer our research
questions: RQ1) Blocking SJoin consistently exhibits higher F1 scores, and the
results are more reliable. However, time efficiency depends on the input graphs
and applied similarity functions. RQ2) A threshold value prunes the amount of
expected results and does not affect the completeness of SJoin. RQ3) Clearly, a
semantic similarity function allows for matching RDF graphs more accurately.

5 Related Work

Traditional binary join operators require join variables instantiations to be ex-
actly the same. For example, XJoin [11] and Hash Join [2] (chosen as a baseline
in this paper) operators abide this condition. At the Insert step, both blocking
and non-blocking Hash Join algorithms partition incoming tuples into a number
of buckets based on the assumption that after applying a hash function similar
tuples will reside in the same bucket. The assumption holds true in cases of sim-
ple data structures, e.g., numbers or strings. However, applying hash functions
to string representations of complex data structures such as RDF molecules or
RSMs tend to produce more collisions rather then efficient partitions. At the

‣ GADES identifies similarities between DBpedia and Wikidata < 0.4
‣ SJoin + GADES maintains higher F1 score than Hash Join at the cost of

execution time

Michael Galkin, 29.03.2018 Moscow

SJOIN EXPERIMENTS

EXPERIMENT 2 - NON-BLOCKING - GADES
77

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.2 # triples: 153904

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.3 # triples: 32705

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.4 # triples: 639

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.2 # triples: 160062

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.3 # triples: 67169

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600
Time, sec

C
om

pl
et

en
es

s,
 %

hash join sjoin
T0.4 # triples: 3466

500 molecules 1000 molecules

Michael Galkin, 29.03.2018 Moscow

OVERVIEW

▸ MULDER - a federated query engine for heterogeneous
data processing

▸ SMJoin - a multi-way join operator for star-shaped
subqueries

▸ SJoin - a semantic join operator

▸ MSimJoin - a multi-way semantic join operator

OVERVIEW

78

THANK YOU!
galkin@cs.uni-bonn.de

mikhail.galkin@iais.fraunhofer.de

mailto:galkin@cs.uni-bonn.de
mailto:mikhail.galkin@iais.fraunhofer.de

Michael Galkin, 29.03.2018 Moscow

SJOIN

SJOIN FUSION POLICIES
80

Michael Galkin, 29.03.2018 Moscow

SJOIN

SJOIN FUSION POLICIES

1. Semantically equivalent molecules R1 and R2 with two axioms

80

R1

A

B

C

p1

p2

p3

R2

A

C

D

p1

p4

p2

p2 rdf:type owl:FunctionalProperty
p3 rdfs:subPropertyOf p4 E

p1

Michael Galkin, 29.03.2018 Moscow

SJOIN

SJOIN FUSION POLICIES

1. Semantically equivalent molecules R1 and R2 with two axioms
2. Union policy: merge all

80

R1

A

B

C

p1

p2

p3

R2

A

C

D

p1

p4

p2

p2 rdf:type owl:FunctionalProperty
p3 rdfs:subPropertyOf p4 E

p1
R12

A

C

Dp1
p4

p2

Cp3

B
p2

E

p1

Michael Galkin, 29.03.2018 Moscow

SJOIN

SJOIN FUSION POLICIES

1. Semantically equivalent molecules R1 and R2 with two axioms
2. Union policy: merge all
3. Subproperty policy: replace p3 with p4

80

R1

A

B

C

p1

p2

p3

R2

A

C

D

p1

p4

p2

p2 rdf:type owl:FunctionalProperty
p3 rdfs:subPropertyOf p4 E

p1

R12

A

C

Dp1
p4

p2

Cp4

B
p2

E

p1

R12

A

C

Dp1
p4

p2

Cp3

B
p2

E

p1

Michael Galkin, 29.03.2018 Moscow

SJOIN

SJOIN FUSION POLICIES

1. Semantically equivalent molecules R1 and R2 with two axioms
2. Union policy: merge all
3. Subproperty policy: replace p3 with p4
4. Authoritative policy: R1 is authoritative, p2 is functional, hence

(p2,C) is discarded

80

R12

A

Dp1
p4

Cp3

Bp2

E

p1
R1

A

B

C

p1

p2

p3

R2

A

C

D

p1

p4

p2

p2 rdf:type owl:FunctionalProperty
p3 rdfs:subPropertyOf p4 E

p1

R12

A

C

Dp1
p4

p2

Cp4

B
p2

E

p1

R12

A

C

Dp1
p4

p2

Cp3

B
p2

E

p1

