
Встраивание языка запроса в Питон или
Почему Data Scientists живут без SQL

О чем будет доклад

❖ Наша мотивация

❖ Краткое введение в PythonQL

❖ Примеры сценариев, где особенно удобно
пользоваться PythonQL

❖ Текущая реализация, планы на будущее

Во-первых: команда
❖ Daniela Florescu

❖ XQuery, JSONiq, Oracle, Zorba

❖ Pavel Velikhov

❖ XQuery (Enosys,Sedna), SciDB,
Data Science

❖ Sergey Vinogradov

❖ Data Science
* все работы ведутся в свободное от основной работы время
** поэтому проект движется так неспешно

Как это началось
❖ MongoDB, CouchDB :) Попытка как-то возродить JSONiq.

❖ Вывод: отдельный мощный язык для обработки данных делать
неперспективно

❖ Посмотрели на Data Science:

❖ Сообщество баз данных потеряло это аудиторию

❖ Это по сути бывшие аналитики, которые постоянно
работали с SQL

❖ Теперь это люди, которые используют все что можно, но
старательно обходят SQL. Почему?

Data Science (I)
❖ Как обычно работает Data Scientist?

❖ Куча разных источников данных, в разных форматах: CSV,
JSON, текст (HDFS), разные базы данных, т.д.

❖ Очень много задач класса: быстро оценить пользу от
источника данных, быстро проверить гипотезу

❖ Традиционная схема Data Integration (ETL) не работает

❖ Вообще с базой данных не связываются, если:

❖ Данные там уже не лежат

❖ Объем не настолько огромной, что без СУБД не обойтись

Data Science (II)

❖ Дополнительные аргументы против использования
СУБД c мощным языком запросов:

❖ Перед анализом данных, их надо чистить. Легче
чистить данные на “родном” языке

❖ Зачастую, результат анализа - качество
построенной модели, а встроенный функционал
по машинному обучению и статистке в СУБД
сильно отстает. Плюс фактор “родного языка”

PythonQL: Дизайн языка

❖ PythonQL состоит из нескольких компонент:

❖ Основной язык: расширение comprehensions
(list,set,map).

❖ Путевые выражения (сверху JSON структур)

❖ Try-except выражение

❖ Конструктор кортежей

PythonQL: Основной язык
❖ Похож и на SQL и на JSONiq, но является строгим супер-
множеством Питона

❖ Минимальное расширение Питона, особенно это касается
ключевых слов.

❖ По максимуму используются конструкции Питона,
например нет своих кванторов существования и всеобщности,
нет case statement, агрегатные и статистические функции из
стандартных библиотек

❖ Самое большое расширение - это запросы с window.
Функционал window взят из XQuery.

PythonQL: Основной язык
query_expr := [‘select’] expr

 (for | let | window)

 (for | let | window | where | group by |

 order by | count)*

Пример:

 [select (d.model, d.make, reviews)

 for d in dealer_db, p in product_db

 let p_make = try p.man[‘company’] except p.man

 where d.model = p.model and d.make = p.make

 let reviews = [select r for r in p.reviews where r.stars == 5]

 where len(reviews) > 1]

PythonQL: строгое супермножество comprehensions

❖ Comprehensions в Питоне:

❖ [(x,y) for x in coll_1 for y in coll_2 if cond]

❖ { x for x in collection if cond }

❖ { x.key : x.value for x in collection if cond }

❖ (x for x in collection if cond)

PythonQL: Путевые выражения
❖ Путевые выражения очень хорошо себя показали в

XQuery и JSONiq.

❖ Взяли пока минимальный набор из XQuery:

❖ for x in object ./ ‘car’ ./ ‘make’

❖ for x in object ../ _ ./ ‘make’

❖ Пока работают только сверху JSON (то есть list, set, dict
объектов).

❖ Планируется поддержка XML

PythonQL: маленькие приятности

❖ Try-except:

❖ В Питоне механизм исключений реализован в
statement, а не в expression

❖ То есть внутри запроса нельзя пользоваться
исключениями

❖ добавили конструкцию: try expr except expr

❖ Очень удобна при работе с слабо-структурированными
и грязными данными, а также для быстрого анализа

PythonQL: маленькие приятности

❖ Конструктор кортежей

❖ В Питоне есть свои кортежи, но они не
именованные, доступ только по индексам

select (x.fname as fname, y.lname as lname)

for x in names

Несколько сценариев использования (DataScience)

❖ Customer Journey: гетерогенные временные ряды
событий о всех действиях клиента

❖ Data Cleaning & Integration: традиционный
сценарий, но до сих пор тяжелый

❖ Model Evaluation: интересный сценарий, метод,
который предлагаем мы сейчас почти не
используется

Customer Journey

❖ Путешесвие клиента через все стадии услуги

❖ Разнородные события:

❖ открыл счет, перевод денег, заявка на кредит,
выдача кредита, выплата кредита, звонок из кол-
центра, закрытие счета

❖ Нужна разнородная ad-hoc аналитика, быстрая
проверка гипотез

Customer Journey
Сколько клиентов с балансом > 300 долларов в разных
штатах?
res = [
 # Пробежимся во всем клиентам (клиент - это список событий)
 select (state, len(balance) as n_customers)
 for cj in cust_journeys

Выделим данные о клиенте из события об открытие счета
 let c_data = [select e for e in cj where e.event_name==‘open’][0].client_data,

 # Достанем суммы транзакцию по внесению и снятию денег со счета
 withdrawals = [select e.amount for e in cj where e.event_name=='withdraw'],
 deposits = [select e.amount for e in cj where e.event_name=='deposit']

 # Посчитаем баланс и отфильтруем клиентов
 let balance = sum(deposits) - sum(withdrawals)
 where balance > 300

 # Сгруппируем по штату
 group by c_data.address.state as state]

Customer Journey
Клиенты, которым было отказано в кредите, и которые
закрыли счета в течение месяца после этого события.
n_closed_and_refused = [
 # Пробежимся по всем клиентам (клиент = список событий)
 select cj for cj in cust_journeys

 # Найдем событие закрытия счета, если такого нет, пропустим этого клиента
 let close = next((select e for e in cj where e.event_name=='close'),None)
 where close

 # Узнаем дату последней заявки на кредит, если заявки не было, пропустим клиента
 let req = try [select e for e in cj where e.event_name==‘loan_req’][-1] except None
 where req
 let last_request_date = parse(req.date),
 close_date = parse(close.date)

 # Если кредит не выдали и заявка была за месяц или раньше - это наш клиент
 where (close_date - last_request_date).days < 30
 and not [select e for e in cj
 where e.event_name=='loan_issued' and
 (parse(e.date) - last_request_date) > 0]]

Data Integration & Cleaning

❖ Здесь целый спектр проблем, но мы фокусируемся на
быстрой проверке гипотез.

❖ Задача - оценить источник данных максимально быстро

❖ Например у нас есть база клиентов, и мы нашли базу
ритейлеров, которая способна обогатить нашу
основную базу

❖ Мы проверяем, насколько она будет полезна - то есть
насколько хорошо состыкуются эти базы

Data Integration & Cleaning

joined_local_orders = ([
 # Попробуем сделать слияние двух баз
 select amount for m in master_db, o in order_db

 # Применим soundex для игнорирования мелких ошибок написания
 where soundex(m.first_name) == soundex(o.first_name) and
 soundex(m.last_name) == soundex(o.last_name) and

 # Но нас интересуют покупки по месту жительства
 any([select c_addr.city == o.store.address.city
 for c_addr in m.addresses])

 # Попробуем еще пропарсить сумму покупки, если не получается
 # то выкидываем эти данные
 let amount = try Decimal(o.amount) except None
 where amount])

Model Evaluation

❖ Выбор и оценка модели - очень типичная задача для
машинного обучения

❖ Мы рассмотрим сценарий, где сравниваются все
модели и надо понять в каких случаях и насколько
сильно различаются их результаты

❖ Возьмем такой пример: у нас есть данные о домах и
две модели, которые предсказывают цену дома

Model Evaluation
res = [
 # В результате мы хотим получить разбивку по городам, где видна корреляция моделей,
 # а также средние квадратичные ошибки моделей
 select (city, corr, mrsq_1, mrsq_2)

 # Соберем воедино данные
 for d in dataset, m_1 in model1, m_2 in model2
 where d.record_id == m_1.record_id and d.record_id == m_2.record_id

 # Отдельно выделим атрибуты, которые превратятся в списки после группировки
 let price = d.price, m1_pred = m_1.pred, m2_pred = m_2.pred

 # Сгруппируем по городу
 group by d.city as city

 # Вычислим ошибки и корреляция методами Питона (sklean, scipy)
 let mrsq_1 = mean_squared_error(price, m1_pred),
 mrsq_2 = mean_squared_error(price, m2_pred),
 corr = pearsonr(m1_pred, m2_pred)[0]

 # Отсортируем по корреляции по убыванию
 order by corr desc]

Текущая реализация
❖ Реализация похожа на препроцессор, PythonQL
транслируется в Python и исполняется обычным Питоном

❖ Грамматический разбор реализован на ANTLR4:

❖ Разбор получился очень медленным

❖ Сообщения об ошибках низкого качества

❖ Примитивный процессор запросов, написанный на Питоне.
Все внутренние выражения компилируются и исполняются
через eval.

❖ Нет оптимизатора и планировщика запросов

Дальнейший план:

❖ Установка пакета через стандартный менеджер
пакетов

❖ Использование pythonql через механизм кодировки
кода в Питоне

❖ #coding: pythonql

❖ Рудиментарный wrapper для SQL баз, Apache Spark

Долгосрочные вызовы
❖ Оптимизатор и планировщик

❖ Все обычные проблемы разработки медиатора

❖ Дополнительные неприятности из-за динамичности языка

❖ Например: в Питоне без проблем внутри любой функции
можно переопределить функции любых библиотек

❖ Как бороться:

❖ Создать аннотации, гарантирующие что функция хорошая

❖ Перед запуском запроса проверить, что функции не
переопределены (через интроспекцию)

Долгосрочные вызовы

❖ Процессор запросов:

❖ Нужна эффективная реализация на C++ для много-ядерного исполнения

❖ Переписывание и оптимизация Apache Spark планов для параллельного
исполнения

❖ Поддержка разных форматов результатов запросов (а значит и
внутренние представления):

❖ Просто список кортежей в Питоне: очень некомпактное представление

❖ Массивы numpy (С++ массивы): компактное представление +
векторные операции. Но не гетерогенные

❖ pandas Dataframe - реализованы сверху numpy

Вопросы и ответы

❖ Спасибо за внимание

❖ Давайте обсудим!

