
Возможности СУБД Postgres для работы с

документноориентированными базами
данных

Alexander Korotkov, Oleg Bartunov, Teodor Sigaev
Postgres Professional

Oleg Bartunov, Teodor Sigaev

• Locale support
• Extendability (indexing)
• GiST (KNN), GIN, SP-GiST

• Full Text Search (FTS)
• Jsonb, VODKA
• Extensions:
• intarray
• pg_trgm
• ltree
• hstore
• plantuner

https://www.facebook.com/oleg.bartunov
obartunov@gmail.com, teodor@sigaev.ru
https://www.facebook.com/groups/postgresql/

https://www.facebook.com/oleg.bartunov
mailto:obartunov@gmail.com
mailto:teodor@sigaev.ru
https://www.facebook.com/groups/postgresql/

Alexander Korotkov

aekorotkov@gmail.com

● Indexed regexp search
● GIN compression & fast scan
● Fast GiST build
● Range types indexing
● Split for GiST
● Indexing for jsonb
● jsquery
● Generic WAL + create am (WIP)

Agenda

• Semi-structured data in PostgreSQL
• Intruduction into jsonb
• Jsonb indexing
• Jsquery - Jsonb Query Language
• Jsonb GIN opclasses with JsQuery support
• Future of Jsonb querying

Слабо-структурированные данные

• Слабо-структурированные данные возникают от лени :)
• Агрегирование структурированных данных приводит к слабо-

структурированным данным (разреженная матрица)
• Все слабо-структурированные данные можно реализовать

стандартными способами RDBMS
• Неудобно, проблемы с производительностью

• json — жупел слабо-структурированных данных
• Реальная проблема — это schema-less данные
• Реляционные СУБД трудно переживают изменение схемы
• Key-value (NoSQL) хранилища таких проблем не имеют

Relational Databases

• Реляционные СУБД — интеграционные
• Все приложения общаются через СУБД
• SQL — универсальный язык работы с данными
• Все изменения в СУБД доступны всем
• Изменения схемы очень затратны, медл. релизы
• Рассчитаны на интерактивную работу

• Интересны агрегаты, а не сами данные, нужен SQL
• SQL отслеживает транзакционность, ограничения целостности... вместо человека

NoSQL (концептуальные предпосылки)

• Сервисная архитектура изменила подход к СУБД
• Приложение состоит из сервисов, SQL->HTTP
• Сервисам не нужна одна монолитная СУБД
• Часто достаточно простых key-value СУБД
• Схема меняется «на ходу», быстрые релизы
• ACID → BASE
• Сервисы — это программы, которые могут сами заниматься агрегированием
• Сервисы могут сами следить за целостностью данных

• Много данных, аналитика, большое кол-во одновременных запросов
• Распределенность - кластеры дешевых shared-nothing машин

• NoSQL —горизонтальная масштабируемость и производительность

NoSQL

• Key-value databases
• Ordered k-v для поддержки диапазонов

• Column family (column-oriented) stores
• Big Table — value имеет структуру:
• column families, columns, and timestamped versions (maps-of maps-of maps)

• Document databases
• Value - произвольная сложность, индексы
• Имена полей, FTS — значение полей

• Graph databases — эволюция ordered-kv

Челлендж !

• Полноценная работа со слабо-структурированными данными в
реляционной СУБД
• Хранение (тип данных для хранение key-value данных)
• Поиск (операторы и функции)
• Производительность (бинарное хранилище, индексы)

Introduction to hstore

• Hstore — key/value storage (inspired by perl hash)
'a=>1, b=>2'::hstore

• Key, value — strings
• Get value for a key: hstore -> text
• Operators with indexing support (GiST, GIN)

Check for key: hstore ? text
Contains: hstore @> hstore

• check documentations for more
• Functions for hstore manipulations (akeys, avals, skeys, svals, each,......)

http://www.postgresql.org/docs/devel/static/hstore.html

History of hstore development

• May 16, 2003 — first version of hstore

Introduction to hstore

• Hstore benefits
• In provides a flexible model for storing a semi-structured data in relational

database
• hstore has binary storage

• Hstore drawbacks
• Too simple model !

Hstore key-value model doesn't supports tree-like structures as json
(introduced in 2006, 3 years after hstore)

• Json — popular and standartized (ECMA-404 The JSON Data
Interchange Standard, JSON RFC-7159)
• Json — PostgreSQL 9.2, textual storage

Hstore vs Json

SELECT sum((v->'a')::text::int) FROM json_test;
851.012 ms

SELECT sum((v->'a')::int) FROM hstore_test;
330.027 ms

• hstore явно быстрее json даже на простых данных
CREATE TABLE hstore_test AS (SELECT
'a=>1, b=>2, c=>3, d=>4, e=>5'::hstore AS v
FROM generate_series(1,1000000));

CREATE TABLE json_test AS (SELECT
'{"a":1, "b":2, "c":3, "d":4, "e":5}'::json AS v
FROM generate_series(1,1000000));

Hstore vs Json
• PostgreSQL already has json since 9.2, which supports document-

based model, but
• It's slow, since it has no binary representation and needs to be parsed every

time
• Hstore is fast, thanks to binary representation and index support
• It's possible to convert hstore to json and vice versa, but current hstore is

limited to key-value
• Need hstore with document-based model. Share it's
binary representation with json !

History of hstore development

• May 16, 2003 - first (unpublished) version of hstore for PostgreSQL
7.3
• Dec, 05, 2006 - hstore is a part of PostgreSQL 8.2
 (thanks, Hubert Depesz Lubaczewski!)
• May 23, 2007 - GIN index for hstore, PostgreSQL 8.3
• Sep, 20, 2010 - Andrew Gierth improved hstore, PostgreSQL 9.0

http://www.postgresql.org/message-id/9e4684ce0605031006le37a9arca20816dd278f13@mail.gmail.com
https://www.pgcon.org/2007/schedule/events/22.en.html
http://www.postgresql.org/message-id/87hc1xi9gd.fsf@news-spur.riddles.org.uk

Nested hstore

Nested hstore & jsonb

• Nested hstore at PGCon-2013, Ottawa, Canada (May 24) — thanks
Engine Yard for support !
One step forward true json data type.Nested hstore with arrays support

• Binary storage for nested data at PGCon Europe — 2013, Dublin, Ireland
(Oct 29)
Binary storage for nested data structuresand application to hstore data type

• November, 2013 — binary storage was reworked, nested hstore and
jsonb share the same storage. Andrew Dunstan joined the project.
• January, 2014 - binary storage moved to core

http://www.sai.msu.su/~megera/postgres/talks/hstore-pgcon-2013.pdf
http://www.sai.msu.su/~megera/postgres/talks/hstore-dublin-2013.pdf

Nested hstore & jsonb

• Feb-Mar, 2014 - Peter Geoghegan joined the project, nested hstore was
cancelled in favour to jsonb (Nested hstore patch for 9.3).
• Mar 23, 2014 Andrew Dunstan committed jsonb to 9.4 branch !

pgsql: Introduce jsonb, a structured format for storing json.

Introduce jsonb, a structured format for storing json.

The new format accepts exactly the same data as the json type. However, it is
stored in a format that does not require reparsing the orgiginal text in order
to process it, making it much more suitable for indexing and other operations.
Insignificant whitespace is discarded, and the order of object keys is not
preserved. Neither are duplicate object keys kept - the later value for a given
key is the only one stored.

http://www.sigaev.ru/git/gitweb.cgi?p=hstore.git;a=summary
http://www.postgresql.org/message-id/E1WRpmB-0002et-MT@gemulon.postgresql.org

Jsonb vs Json

SELECT '{"c":0, "a":2,"a":1}'::json, '{"c":0, "a":2,"a":1}'::jsonb;
 json | jsonb
-----------------------+------------------
 {"c":0, "a":2,"a":1} | {"a": 1, "c": 0}
(1 row)

• json: textual storage «as is»
• jsonb: no whitespaces
• jsonb: no duplicate keys, last key win
• jsonb: keys are sorted

Jsonb vs Json

• Data
• 1,252,973 Delicious bookmarks

• Server
• MBA, 8 GB RAM, 256 GB SSD

• Test
• Input performance - copy data to table
• Access performance - get value by key
• Search performance contains @> operator

Jsonb vs Json

• Data
• 1,252,973 bookmarks from Delicious in json format (js)
• The same bookmarks in jsonb format (jb)
• The same bookmarks as text (tx)

=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
--------+------+-------+----------+---------+-------------
 public | jb | table | postgres | 1374 MB | overhead is < 4%
 public | js | table | postgres | 1322 MB |
 public | tx | table | postgres | 1322 MB |

Jsonb vs Json

• Input performance (parser)
Copy data (1,252,973 rows) as text, json,jsonb

copy tt from '/path/to/test.dump'

Text: 34 s - as is
Json: 37 s - json validation
Jsonb: 43 s - json validation, binary storage

Jsonb vs Json (binary storage)

• Access performance — get value by key
• Base: SELECT js FROM js;
• Jsonb: SELECT j->>'updated' FROM jb;
• Json: SELECT j->>'updated' FROM js;

Base: 0.6 s
Jsonb: 1 s 0.4
Json: 9.6 s 9

Jsonb ~ 20X faster Json

Jsonb vs Json

EXPLAIN ANALYZE SELECT count(*) FROM js WHERE js #>>'{tags,0,term}' = 'NYC';
 QUERY PLAN
--
 Aggregate (cost=187812.38..187812.39 rows=1 width=0)
(actual time=10054.602..10054.602 rows=1 loops=1)
 -> Seq Scan on js (cost=0.00..187796.88 rows=6201 width=0)
(actual time=0.030..10054.426 rows=123 loops=1)
 Filter: ((js #>> '{tags,0,term}'::text[]) = 'NYC'::text)
 Rows Removed by Filter: 1252850
 Planning time: 0.078 ms
 Execution runtime: 10054.635 ms
(6 rows)

Json: no contains @> operator,
search first array element

Jsonb vs Json (binary storage)

EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
 QUERY PLAN

 Aggregate (cost=191521.30..191521.31 rows=1 width=0)
(actual time=1263.201..1263.201 rows=1 loops=1)
 -> Seq Scan on jb (cost=0.00..191518.16 rows=1253 width=0)
 (actual time=0.007..1263.065 rows=285 loops=1)
 Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
 Rows Removed by Filter: 1252688
 Planning time: 0.065 ms
 Execution runtime: 1263.225 ms Execution runtime: 10054.635 ms
(6 rows)

Jsonb ~ 10X faster Json

Jsonb vs Json (GIN: key && value)

EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
 QUERY PLAN

 Aggregate (cost=4772.72..4772.73 rows=1 width=0)
(actual time=8.486..8.486 rows=1 loops=1)
 -> Bitmap Heap Scan on jb (cost=73.71..4769.59 rows=1253 width=0)
(actual time=8.049..8.462 rows=285 loops=1)
 Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on gin_jb_idx (cost=0.00..73.40 rows=1253 width=0)
(actual time=8.014..8.014 rows=285 loops=1)
 Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
 Planning time: 0.115 ms
 Execution runtime: 8.515 ms Execution runtime: 10054.635 ms
(8 rows)

CREATE INDEX gin_jb_idx ON jb USING gin(jb);

Jsonb ~ 150X faster Json

Jsonb vs Json (GIN: hash path.value)

EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
 QUERY PLAN

 Aggregate (cost=4732.72..4732.73 rows=1 width=0)
(actual time=0.644..0.644 rows=1 loops=1)
 -> Bitmap Heap Scan on jb (cost=33.71..4729.59 rows=1253 width=0)
(actual time=0.102..0.620 rows=285 loops=1)
 Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on gin_jb_path_idx
(cost=0.00..33.40 rows=1253 width=0) (actual time=0.062..0.062 rows=285 loops=1)
 Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
 Planning time: 0.056 ms
 Execution runtime: 0.668 ms Execution runtime: 10054.635 ms
(8 rows)

CREATE INDEX gin_jb_path_idx ON jb USING gin(jb jsonb_path_ops);

Jsonb ~ 1800X faster Json

MongoDB 2.6.0

• Load data - ~13 min SLOW ! Jsonb 43 s

• Search - ~ 1s (seqscan) THE SAME

• Search - ~ 1ms (indexscan) Jsonb 0.7ms

mongoimport --host localhost -c js --type json < delicious-rss-1250k
2014-04-08T22:47:10.014+0400 3700 1233/second
...
2014-04-08T23:00:36.050+0400 1252000 1547/second
2014-04-08T23:00:36.565+0400 check 9 1252973
2014-04-08T23:00:36.566+0400 imported 1252973 objects

db.js.find({tags: {$elemMatch:{ term: "NYC"}}}).count()
285
-- 980 ms

db.js.ensureIndex({"tags.term" : 1})
db.js.find({tags: {$elemMatch:{ term: "NYC"}}}).

Summary: PostgreSQL 9.4 vs Mongo 2.6.0

• Operator contains @>
• json : 10 s seqscan
• jsonb : 8.5 ms GIN jsonb_ops
• jsonb : 0.7 ms GIN jsonb_path_ops
• mongo : 1.0 ms btree index

• Index size
• jsonb_ops - 636 Mb (no compression, 815Mb)

jsonb_path_ops - 295 Mb
• jsonb_path_ops (tags) - 44 Mb USING gin((jb->'tags') jsonb_path_ops
• mongo (tags) - 387 Mb

mongo (tags.term) - 100 Mb

•Table size
•postgres : 1.3Gb
•mongo : 1.8Gb

•Input performance:
• Text : 34 s
• Json : 37 s
• Jsonb : 43 s
• mongo : 13 m

Citus dataset
 {
 "customer_id": "AE22YDHSBFYIP",
 "product_category": "Business & Investing",
 "product_group": "Book",
 "product_id": "1551803542",
 "product_sales_rank": 11611,
 "product_subcategory": "General",
 "product_title": "Start and Run a Coffee Bar (Start & Run a)",
 "review_date": {
 "$date": 31363200000
 },
 "review_helpful_votes": 0,
 "review_rating": 5,
 "review_votes": 10,
 "similar_product_ids": [
 "0471136174",
 "0910627312",
 "047112138X",
 "0786883561",
 "0201570483"
]
}

• 3023162 reviews from Citus
1998-2000 years
• 1573 MB

Citus dataset: storage in jsonb

Heap size: 1588 MB
PK size: 65 MB
GIN index on product ids: 89 MB

 Table "public.customer_reviews_jsonb"
 Column | Type | Modifiers
--------+---------+---
 id | integer | not null default
 | | nextval('customer_reviews_jsonb_id_seq'::regclass)
 jr | jsonb |
Indexes:
 "customer_reviews_jsonb_pkey" PRIMARY KEY, btree (id)
 "customer_reviews_jsonb_similar_product_ids_idx" gin
 ((jr -> 'similar_product_ids'::text))

Citus dataset: normalized storage

Table "public.customer_reviews_flat"
 Column | Type | Modifiers
---------------------+---------+-----------
 customer_id | text | not null
 review_date | date | not null
...
 product_subcategory | text |
 id | integer | not null...
Indexes:
 "customer_reviews_flat_pkey"
 PRIMARY KEY, btree (id)

Table "public.customer_reviews_similar_product"
 Column | Type | Modifiers
--------------------+---------+-----------
 product_id | integer | not null
 similar_product_id | bpchar | not null
Indexes:
 "similar_product_product_id_idx"
 btree (product_id)
 "similar_product_similar_product_id_idx"
 btree (similar_product_id COLLATE "C")

14 168 514 rows

Heap size: 434 MB (main table) + 598 MB (similar products) = 1032 MB
PK size: 65 MB (main table) + 304 MB (similar products) = 369 MB
Index on similar product id: 426 MB

Citus dataset: storage using array

Heap size: 719 MB
PK size: 65 MB
GIN index on product ids: 87 MB

 Table "public.customer_reviews_array"
 Column | Type | Modifiers
----------------------+-----------------+-------------
 id | integer | not null …
 customer_id | text | not null
 review_date | date | not null
...
 similar_product_ids | character(10)[] |
Indexes:
 "customer_reviews_array_pkey" PRIMARY KEY, btree (id)
 "customer_reviews_array_similar_product_ids_idx gin
 (similar_product_ids COLLATE "C")

Citus dataset: storage size

flat array jsonb
0

200

400

600

800

1000

1200

1400

1600

1800

2000

similar_products_idx

pkey

heap

Citus dataset: storage conclusion

● Array storage is most compact. It doesn't have to store
keys. Storage of similar ids as an array is very space
efficient as well. However, it's not as flexible as jsonb.

● GIN handles duplicates very efficient.
● Jsonb and flat versions have about same size. Each

version has its own overhead. Jsonb stores key names
and extra headers. Flat version has to store extra tuple
headers and larger btree indexes.

Querying objects by ID

Count flat array jsonb

1000 4 ms 0,40 ms 0,45 ms

10 000 40 ms 3 ms 3,5 ms

100 000 357 ms 24 ms 30 ms

1000 10000 100000
0,1

1

10

100

1000

flat

array

jsonb

Querying similar objects

16 256 4099 83577
0,01

0,1

1

10

100

1000

flat

array

jsonb

Count flat, ms array, ms jsonb, ms

16 0,2 0,06 0,1

256 1 0,2 0,3

4099 15 4,5 6

83577 200 33 77

Citus dataset: querying objects

● With flat storage you have to query two tables in order
to assemble objects. That gives significant overhead to
flat storage.

● Performace of array and jsonb version is about the same.
Array version is slightly faster because its storage is more
compact.

Jsonb (Apr, 2014)

• Documentation
• JSON Types, JSON Functions and Operators

• There are many functionality left in nested hstore
• Can be an extension

• Need query language for jsonb
• <,>,&& … operators for values

 a.b.c.d && [1,2,10]
• Structural queries on paths

*.d && [1,2,10]
• Indexes !

http://www.postgresql.org/docs/devel/static/datatype-json.html
http://www.postgresql.org/docs/devel/static/functions-json.html

Jsonb query

Currently, one can search jsonb data using:
• Contains operators - jsonb @> jsonb, jsonb <@ jsonb (GIN indexes)

jb @> '{"tags":[{"term":"NYC"}]}'::jsonb
Keys should be specified from root

● Equivalence operator — jsonb = jsonb (GIN indexes)
• Exists operators — jsonb ? text, jsonb ?! text[], jsonb ?& text[] (GIN indexes)

jb WHERE jb ?| '{tags,links}'
Only root keys supported
• Operators on jsonb parts (functional indexes)

SELECT ('{"a": {"b":5}}'::jsonb -> 'a'->>'b')::int > 2;
CREATE INDEX ….USING BTREE ((jb->'a'->>'b')::int);
Very cumbersome, too many functional indexes

Jsonb querying an array: simple case

Find bookmarks with tag «NYC»:

SELECT *

FROM js

WHERE js @> '{"tags":[{"term":"NYC"}]}';

Jsonb querying an array: complex case

Find companies where CEO or CTO is called Neil.
One could write...

SELECT * FROM company
WHERE js @> '{"relationships":[{"person":
 {"first_name":"Neil"}}]}' AND
 (js @> '{"relationships":[{"title":"CTO"}]}' OR
 js @> '{"relationships":[{"title":"CEO"}]}');

Jsonb querying an array: complex case

Each «@>» is processed independently.
SELECT * FROM company
WHERE js @> '{"relationships":[{"person":
 {"first_name":"Neil"}}]}' AND
 (js @> '{"relationships":[{"title":"CTO"}]}' OR
 js @> '{"relationships":[{"title":"CEO"}]}');

Actually, this query searches for companies with some
CEO or CTO and someone called Neil...

Jsonb querying an array: complex case

The correct version is so.
SELECT * FROM company
WHERE js @> '{"relationships":[{"title":"CEO",
 "person":{"first_name":"Neil"}}]}' OR
 js @> '{"relationships":[{"title":"CTO",
 "person":{"first_name":"Neil"}}]}';

When constructing complex conditions over same array
element, query length can grow exponentially.

Jsonb querying an array: another approach

Using subselect and jsonb_array_elements:
SELECT * FROM company
WHERE EXISTS (
 SELECT 1
 FROM jsonb_array_elements(js -> 'relationships') t
 WHERE t->>'title' IN ('CEO', 'CTO') AND
 t ->'person'->>'first_name' = 'Neil');

Jsonb querying an array: summary

Using «@>»
• Pro
• Indexing support

• Cons
• Checks only equality for scalars
• Hard to explain complex logic

Using subselect and
jsonb_array_elements
• Pro
• Full power of SQL can be used to

express condition over element
• Cons
• No indexing support
• Heavy syntax

Jsonb query

• Need Jsonb query language
• Simple and effective way to search in arrays (and other iterative searches)
• More comparison operators
• Types support
• Schema support (constraints on keys, values)
• Indexes support

• Introduce Jsquery - textual data type and @@ match operator

 jsonb @@ jsquery

Jsonb query language (Jsquery)

• # - any element array

• % - any key

• * - anything

• $ - current element

• Use "double quotes" for key !

SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# = 2';

SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '%.b.# = 2';

SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '*.# = 2';

select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# ($ = 2 OR $ < 3)';

select 'a1."12222" < 111'::jsquery;

path ::= key
 | path '.' key_any
 | NOT '.' key_any

key ::= '*'
 | '#'
 | '%'
 | '$'
 | STRING
 ….....

key_any ::= key
 | NOT

Jsonb query language (Jsquery)

value_list
 ::= scalar_value
 | value_list ',' scalar_value

array ::= '[' value_list ']'

scalar_value
 ::= null
 | STRING
 | true
 | false
 | NUMERIC
 | OBJECT
 …....

Expr ::= path value_expr
 | path HINT value_expr
 | NOT expr
 | NOT HINT value_expr
 | NOT value_expr
 | path '(' expr ')'
 | '(' expr ')'
 | expr AND expr
 | expr OR expr

path ::= key
 | path '.' key_any
 | NOT '.' key_any

key ::= '*'
 | '#'
 | '%'
 | '$'
 | STRING
 ….....

key_any ::= key
 | NOT

value_expr
 ::= '=' scalar_value
 | IN '(' value_list ')'
 | '=' array
 | '=' '*'
 | '<' NUMERIC
 | '<' '=' NUMERIC
 | '>' NUMERIC
 | '>' '=' NUMERIC
 | '@' '>' array
 | '<' '@' array
 | '&' '&' array
 | IS ARRAY
 | IS NUMERIC
 | IS OBJECT
 | IS STRING
 | IS BOOLEAN

Jsonb query language (Jsquery)

• Scalar

• Test for key existence

• Array overlap

• Array contains

• Array contained

select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# IN (1,2,5)';

select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b = *';

select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b && [1,2,5]';

select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b @> [1,2]';

select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b <@ [1,2,3,4,5]';

value_expr
 ::= '=' scalar_value
 | IN '(' value_list ')'
 | '=' array
 | '=' '*'
 | '<' NUMERIC
 | '<' '=' NUMERIC
 | '>' NUMERIC
 | '>' '=' NUMERIC
 | '@' '>' array
 | '<' '@' array
 | '&' '&' array
 | IS ARRAY
 | IS NUMERIC
 | IS OBJECT
 | IS STRING
 | IS BOOLEAN

Jsonb query language (Jsquery)

• Type checking

select '{"x": true}' @@ 'x IS boolean'::jsquery,
 '{"x": 0.1}' @@ 'x IS numeric'::jsquery;
 ?column? | ?column?
----------+----------
 t | t

 IS BOOLEAN

 IS NUMERIC

 IS ARRAY

 IS OBJECT

 IS STRINGselect '{"a":{"a":1}}' @@ 'a IS object'::jsquery;
 ?column?

 t

select '{"a":["xxx"]}' @@ 'a IS array'::jsquery, '["xxx"]' @@ '$ IS array'::jsquery;
 ?column? | ?column?
----------+----------
 t | t

Jsonb query language (Jsquery)

• How many products are similar to "B000089778" and have
product_sales_rank in range between 10000-20000 ?

• SQL
SELECT count(*) FROM jr WHERE (jr->>'product_sales_rank')::int > 10000
and (jr->> 'product_sales_rank')::int < 20000 and
 ….boring stuff

• Jsquery
SELECT count(*) FROM jr WHERE jr @@ ' similar_product_ids &&
["B000089778"] AND product_sales_rank($ > 10000 AND $ < 20000)'

• Mongodb
db.reviews.find({ $and :[{similar_product_ids: { $in ["B000089778"]}},
{product_sales_rank:{$gt:10000, $lt:20000}}] }).count()

«#», «*», «%» usage rules

Each usage of «#», «*», «%» means separate element
• Find companies where CEO or CTO is called Neil.
SELECT count(*) FROM company WHERE js @@ 'relationships.#(title in
("CEO", "CTO") AND person.first_name = "Neil")'::jsquery;
 count

 12

• Find companies with some CEO or CTO and someone called Neil
SELECT count(*) FROM company WHERE js @@ 'relationships(#.title in
("CEO", "CTO") AND #.person.first_name = "Neil")'::jsquery;
 count

 69

Jsonb query language (Jsquery)

explain(analyze, buffers) select count(*) from jb where jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
 QUERY PLAN

 Aggregate (cost=191517.30..191517.31 rows=1 width=0) (actual time=1039.422..1039.423 rows=1 loops=1)
 Buffers: shared hit=97841 read=78011
 -> Seq Scan on jb (cost=0.00..191514.16 rows=1253 width=0) (actual time=0.006..1039.310 rows=285 loops=1)
 Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
 Rows Removed by Filter: 1252688
 Buffers: shared hit=97841 read=78011
 Planning time: 0.074 ms

 Execution time: 1039.444 ms

explain(analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
 QUERY PLAN
--
 Aggregate (actual time=891.707..891.707 rows=1 loops=1)
 -> Seq Scan on jb (actual time=0.010..891.553 rows=285 loops=1)
 Filter: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
 Rows Removed by Filter: 1252688

 Execution time: 891.745 ms

Jsquery (indexes)

• GIN opclasses with jsquery support
• jsonb_value_path_ops — use Bloom filtering for key matching
{"a":{"b":{"c":10}}} → 10.(bloom(a) or bloom(b) or bloom(c))
• Good for key matching (wildcard support) , not good for range query

• jsonb_path_value_ops — hash path (like jsonb_path_ops)
{"a":{"b":{"c":10}}} → hash(a.b.c).10
• No wildcard support, no problem with ranges

 List of relations
 Schema | Name | Type | Owner | Table | Size | Description
--------+-------------------------+-------+----------+--------------+---------+-------------
 public | jb | table | postgres | | 1374 MB |
 public | jb_value_path_idx | index | postgres | jb | 306 MB |
 public | jb_gin_idx | index | postgres | jb | 544 MB |
 public | jb_path_value_idx | index | postgres | jb | 306 MB |
 public | jb_path_idx | index | postgres | jb | 251 MB |

Jsquery (indexes)

explain(analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
 QUERY PLAN
--
 Aggregate (actual time=0.609..0.609 rows=1 loops=1)
 -> Bitmap Heap Scan on jb (actual time=0.115..0.580 rows=285 loops=1)
 Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on jb_value_path_idx (actual time=0.073..0.073 rows=285
 loops=1)
 Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
 Execution time: 0.634 ms
(7 rows)

Jsquery (indexes)

explain(analyze,costs off) select count(*) from jb where jb @@ '*.term = "NYC"';
 QUERY PLAN
--
 Aggregate (actual time=0.688..0.688 rows=1 loops=1)
 -> Bitmap Heap Scan on jb (actual time=0.145..0.660 rows=285 loops=1)
 Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on jb_value_path_idx (actual time=0.113..0.113 rows=285
 loops=1)
 Index Cond: (jb @@ '*."term" = "NYC"'::jsquery)
 Execution time: 0.716 ms
(7 rows)

Jsquery (indexes)

explain (analyze, costs off) select count(*) from jr where
jr @@ ' similar_product_ids && ["B000089778"]';
 QUERY PLAN
--
 Aggregate (actual time=0.359..0.359 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=0.084..0.337 rows=185 loops=1)
 Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
 Heap Blocks: exact=107
 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.057..0.057 rows=185
 loops=1)
 Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
 Execution time: 0.394 ms
(7 rows)

Jsquery (indexes)

explain (analyze, costs off) select count(*) from jr where
 jr @@ ' similar_product_ids && ["B000089778"]
AND product_sales_rank($ > 10000 AND $ < 20000)';
 QUERY PLAN
--
 Aggregate (actual time=126.149..126.149 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=126.057..126.143 rows=45 loops=1)
 Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] &
 "product_sales_rank"($ > 10000 & $ < 20000))'::jsquery)
 Heap Blocks: exact=45
 -> Bitmap Index Scan on jr_path_value_idx (actual time=126.029..126.029
 rows=45 loops=1)
 Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] &
"product_sales_rank"($ > 10000 & $ < 20000))'::jsquery)
 Execution time: 129.309 ms !!! No statistics

• No statistics, no planning :(
Not selective, better not use index!

MongoDB 2.6.0

db.reviews.find({ $and :[{similar_product_ids: { $in:["B000089778"]}}, {product_sales_rank:{$gt:10000, $lt:20000}}] })
.explain()
{

"n" : 45,
 ….................
"millis" : 7,
"indexBounds" : {

"similar_product_ids" : [index size = 400 MB just for similar_product_ids !!!
[

"B000089778",
"B000089778"

]
]

},
}

Jsquery (indexes)

explain (analyze,costs off) select count(*) from jr where
jr @@ ' similar_product_ids && ["B000089778"]'
and (jr->>'product_sales_rank')::int>10000 and (jr->>'product_sales_rank')::int<20000;

 Aggregate (actual time=0.479..0.479 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=0.079..0.472 rows=45 loops=1)
 Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
 Filter: ((((jr ->> 'product_sales_rank'::text))::integer > 10000) AND
(((jr ->> 'product_sales_rank'::text))::integer < 20000))
 Rows Removed by Filter: 140
 Heap Blocks: exact=107
 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.041..0.041 rows=185
 loops=1)
 Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
 Execution time: 0.506 ms Potentially, query could be faster Mongo !

• If we rewrite query and use planner

Jsquery (optimizer) — NEW !

• Jsquery now has built-in simple optimiser.
explain (analyze, costs off) select count(*) from jr where
jr @@ 'similar_product_ids && ["B000089778"]
AND product_sales_rank($ > 10000 AND $ < 20000)'

 Aggregate (actual time=0.422..0.422 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1)
 Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
 Rows Removed by Index Recheck: 140
 Heap Blocks: exact=107
 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060
rows=185 loops=1)
 Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)

 Execution time: 0.480 ms vs 7 ms MongoDB !

Jsquery (optimizer) — NEW !

• Since GIN opclasses can't expose something special to explain output,
jsquery optimiser has its own explain functions:
• text gin_debug_query_path_value(jsquery) — explain for jsonb_path_value_ops
SELECT gin_debug_query_path_value('x = 1 AND (*.y = 1 OR y = 2)');
 gin_debug_query_path_value

 x = 1 , entry 0 +

• text gin_debug_query_value_path(jsquery) — explain for jsonb_value_path_ops
SELECT gin_debug_query_value_path('x = 1 AND (*.y = 1 OR y = 2)');
 gin_debug_query_value_path

 AND +
 x = 1 , entry 0 +
 OR +
 *.y = 1 , entry 1 +
 y = 2 , entry 2 +

Jsquery (optimizer) — NEW !

Jsquery now has built-in optimiser for simple queries.
Analyze query tree and push non-selective parts to recheck (like filter)

Selectivity classes:
1) Equality (x = c)
2) Range (c1 < x < c2)
3) Inequality (c > c1)
4) Is (x is type)
5) Any (x = *)

Jsquery (optimizer) — NEW !

AND children can be put into recheck.
SELECT gin_debug_query_path_value('x = 1 AND y > 0');
 gin_debug_query_path_value

 x = 1 , entry 0 +

While OR children can't. We can't handle false negatives.

SELECT gin_debug_query_path_value('x = 1 OR y > 0');
 gin_debug_query_path_value

 OR +
 x = 1 , entry 0 +
 y > 0 , entry 1 +

Jsquery (optimizer) — NEW !

Can't do much with NOT, because hash is lossy. After NOT false positives
turns into false negatives which we can't handle.
SELECT gin_debug_query_path_value('x = 1 AND (NOT y = 0)');
 gin_debug_query_path_value

 x = 1 , entry 0 +

Jsquery (optimizer) — NEW !

• Jsquery optimiser pushes non-selective operators to recheck
explain (analyze, costs off) select count(*) from jr where
jr @@ 'similar_product_ids && ["B000089778"]
AND product_sales_rank($ > 10000 AND $ < 20000)'

 Aggregate (actual time=0.422..0.422 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1)
 Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
 Rows Removed by Index Recheck: 140
 Heap Blocks: exact=107
 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060
rows=185 loops=1)
 Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
 Execution time: 0.480 ms

Jsquery (HINTING) — NEW !

• Jsquery now has HINTING (if you don't like optimiser)!
explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank > 10000'
--
 Aggregate (actual time=2507.410..2507.410 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=1118.814..2352.286 rows=2373140 loops=1)
 Recheck Cond: (jr @@ '"product_sales_rank" > 10000'::jsquery)
 Heap Blocks: exact=201209
 -> Bitmap Index Scan on jr_path_value_idx (actual time=1052.483..1052.48
rows=2373140 loops=1)
 Index Cond: (jr @@ '"product_sales_rank" > 10000'::jsquery)
 Execution time: 2524.951 ms

• Better not to use index — HINT /* --noindex */
explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank /*-- noindex */ >
10000';
--
 Aggregate (actual time=1376.262..1376.262 rows=1 loops=1)
 -> Seq Scan on jr (actual time=0.013..1222.123 rows=2373140 loops=1)
 Filter: (jr @@ '"product_sales_rank" /*-- noindex */ > 10000'::jsquery)
 Rows Removed by Filter: 650022
 Execution time: 1376.284 ms

Jsquery (HINTING) — NEW !

• If you know that inequality is selective then use HINT /* --index */
explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank /*-- index*/ >
3000000 AND review_rating = 5'::jsquery;
 QUERY PLAN

 Aggregate (actual time=12.307..12.307 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=11.259..12.244 rows=739 loops=1)
 Recheck Cond: (jr @@ '("product_sales_rank" /*-- index */ > 3000000 AND "review_rating" =
5)'::jsquery)
 Heap Blocks: exact=705
 -> Bitmap Index Scan on jr_path_value_idx (actual time=11.179..11.179 rows=739 loops=1)
 Index Cond: (jr @@ '("product_sales_rank" /*-- index */ > 3000000 AND "review_rating" =
5)'::jsquery)

 Execution time: 12.359 ms vs 1709.901 ms (without hint)
(7 rows)

Jsquery use case: schema specification

CREATE TABLE js (
 id serial primary key,
 v jsonb,
 CHECK(v @@ 'name IS STRING AND
 coords IS ARRAY AND
 NOT coords.# (NOT (
 x IS NUMERIC AND
 y IS NUMERIC))'::jsquery));

Non-numeric coordinates don't exist => All coordinates are numeric

Jsquery use case: schema specification

INSERT INTO js (v) VALUES ('{"name": "abc", "coords": [{"x":
1, "y": 2}, {"x": 3, "y": 4}]}');
INSERT 0 1

• # INSERT INTO js (v) VALUES ('{"name": 1, "coords": [{"x": 1,
"y": 2}, {"x": "3", "y": 4}]}');
ERROR: new row for relation "js" violates check constraint
"js_v_check"

• # INSERT INTO js (v) VALUES ('{"name": "abc", "coords": [{"x":
1, "y": 2}, {"x": "zzz", "y": 4}]}');
ERROR: new row for relation "js" violates check constraint
"js_v_check"

Contrib/jsquery

• Jsquery index support is quite efficient (0.5 ms vs Mongo 7 ms !)
• Future direction
• Make jsquery planner friendly
• Need statistics for jsonb

• Availability
• Jsquery + opclasses are available as extensions
• Grab it from https://github.com/akorotkov/jsquery (branch master) ,

we need your feedback !
• We will release it after PostgreSQL 9.4 release
• Need real sample data and queries !

https://github.com/akorotkov/jsquery

PostgreSQL 9.4+
● Open-source
● Relational database
● Strong support of json

Better indexing ...

• GIN is a proven and effective index access method
• Need indexing for jsonb with operations on paths (no hash!) and values
• B-tree in entry tree is not good - length limit, no prefix compression

 List of relations
 Schema | Name | Type | Owner | Table | Size | Description
--------+-----------------------------+-------+----------+---------------+---------+-------------
 public | jb | table | postgres | | 1374 MB |
 public | jb_uniq_paths | table | postgres | | 912 MB |
 public | jb_uniq_paths_btree_idx | index | postgres | jb_uniq_paths | 885 MB |text_pattern_ops
 public | jb_uniq_paths_spgist_idx | index | postgres | jb_uniq_paths | 598 MB |now much less !

Better indexing ...

• Provide interface to change hardcoded B-tree in Entry tree
• Use spgist opclass for storing paths and values as is (strings hashed in values)

• We may go further - provide interface to change hardcoded B-tree in
posting tree
• GIS aware full text search !

• New index access method

 CREATE INDEX … USING VODKA

GIN History

• Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006
by Oleg Bartunov and Teodor Sigaev

GIN History

• Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006
by Oleg Bartunov and Teodor Sigaev
• Supported by JFG Networks (France)
• «Gin stands for Generalized Inverted iNdex and should be considered as

a genie, not a drink.»
• Alexander Korotkov, Heikki Linnakangas have joined GIN++ development

in 2013

GIN History

TODO

Nearest future:

 * Opclasses for all types (no programming, just many catalog changes).

Distant future:

 * Replace B-tree of entries to something like GiST (VODKA ! 2014)
 * Add multicolumn support
 * Optimize insert operations (background index insertion)

• From GIN Readme, posted in -hackers, 2006-04-26

GIN index structure for jsonb

{
 "product_group": "Book",
 "product_sales_rank": 15000
},
{
 "product_group": "Music",
 "product_sales_rank": 25000
}

Vodka index structure for jsonb

{
 "product_group": "Book",
 "product_sales_rank": 15000
},
{
 "product_group": "Music",
 "product_sales_rank": 25000
}

CREATE INDEX … USING VODKA

set maintenance_work_mem = '1GB';

 List of relations
 Schema | Name | Type | Owner | Table | Size | Description
--------+--------------------+-------+----------+-------+---------+-------------
 public | jb | table | postgres | | 1374 MB | 1252973 rows
 public | jb_value_path_idx | index | postgres | jb | 306 MB | 98769.096
 public | jb_gin_idx | index | postgres | jb | 544 MB | 129860.859
 public | jb_path_value_idx | index | postgres | jb | 306 MB | 100560.313
 public | jb_path_idx | index | postgres | jb | 251 MB | 68880.320
 public | jb_vodka_idx | index | postgres | jb | 409 MB | 185362.865
 public | jb_vodka_idx5 | index | postgres | jb | 325 MB | 174627.234 new spgist
(6 rows)

• Delicious bookmarks, mostly text data

CREATE INDEX … USING VODKA
select count(*) from jb where jb @@ 'tags.#.term = "NYC"';

 Aggregate (actual time=0.423..0.423 rows=1 loops=1)
 -> Bitmap Heap Scan on jb (actual time=0.146..0.404 rows=285 loops=1)
 Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on jb_vodka_idx (actual time=0.108..0.108 rows=285 loops=1)
 Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)

 Execution time: 0.456 ms (0.634 ms, GIN jsonb_value_path_ops)

select count(*) from jb where jb @@ '*.term = "NYC"';

 Aggregate (actual time=0.495..0.495 rows=1 loops=1)
 -> Bitmap Heap Scan on jb (actual time=0.245..0.474 rows=285 loops=1)
 Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery)
 Heap Blocks: exact=285
 -> Bitmap Index Scan on jb_vodka_idx (actual time=0.214..0.214 rows=285 loops=1)
 Index Cond: (jb @@ '*."term" = "NYC"'::jsquery)

 Execution time: 0.526 ms (0.716 ms, GIN jsonb_path_value_ops)

CREATE INDEX … USING VODKA

set maintenance_work_mem = '1GB';

 List of relations
 Schema | Name | Type | Owner | Table | Size | Description
--------+--------------------+-------+----------+-------+---------+-------------
 public | jr | table | postgres | | 1573 MB | 3023162 rows
 public | jr_value_path_idx | index | postgres | jr | 196 MB | 79180.120
 public | jr_gin_idx | index | postgres | jr | 235 MB | 111814.929
 public | jr_path_value_idx | index | postgres | jr | 196 MB | 73369.713
 public | jr_path_idx | index | postgres | jr | 180 MB | 48981.307
 public | jr_vodka_idx3 | index | postgres | jr | 240 MB | 155714.777
 public | jr_vodka_idx4 | index | postgres | jr | 211 MB | 169440.130 new spgist

(6 rows)

• CITUS data, text and numeric

CREATE INDEX … USING VODKA

explain (analyze, costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["B000089778"]';
 QUERY PLAN

 Aggregate (actual time=0.200..0.200 rows=1 loops=1)
 -> Bitmap Heap Scan on jr (actual time=0.090..0.183 rows=185 loops=1)
 Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
 Heap Blocks: exact=107
 -> Bitmap Index Scan on jr_vodka_idx (actual time=0.077..0.077 rows=185 loops=1)
 Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)

 Execution time: 0.237 ms (0.394 ms, GIN jsonb_path_value_idx)
(7 rows)

There are can be different flavors of Vodka

New VODKA concept

• Posting list/tree is just a way of
effective duplicate storage
• Entry tree can consist of

multiple levels of different
access methods
• VODKA is a way to combine

different access method in
single index: VODKA
CONNECTING INDEXES

JsQuery limitations

• Variables are always on the left size
x = 1 – OK

1 = x – Error!

• No calculations in query
x + y = 0 — Error!

• No extra datatypes and search operators
point(x,y) <@ '((0,0),(1,1),(2,1),(1,0))'::polygon

JsQuery limitations

Users want jsquery to be as rich as SQL...

JsQuery limitations

Users want jsquery to be as rich as SQL ...
… But we will discourage them ;)

JsQuery language goals

•Provide rich enough query language for jsonb in 9.4.
• Indexing support for 'jsonb @@ jsquery':
• Two GIN opclasses are in jsquery itself
•VODKA opclasses was tested on jsquery

It's NOT intended to be solution for jsonb querying in
long term!

What JsQuery is NOT?

It's not designed to be another extendable, full weight:
•Parser
• Executor
•Optimizer

It's NOT SQL inside SQL.

Jsonb querying an array: summary

Using «@>»
• Pro
• Indexing support

• Cons
• Checks only equality for

scalars
• Hard to explain complex

logic

Using subselect and
jsonb_array_elements
• Pro
• SQL-rich

• Cons
• No indexing support
• Heavy syntax

JsQuery
• Pro
• Indexing support
• Rich enough for typical

applications
• Cons
• Not extendable

Still looking for a better solution!

Jsonb query: future

Users want jsonb query language to be as rich
as SQL. How to satisfy them?..

Jsonb query: future

Users want jsonb query language to be as rich
as SQL. How to satisfy them?

Bring all required features to SQL-level!

Jsonb query: future

Functional equivalents:
• SELECT * FROM company WHERE EXISTS (SELECT 1
FROM jsonb_array_elements(js->'relationships') t
WHERE t->>'title' IN ('CEO', 'CTO') AND
 t->'person'->>'first_name' = 'Neil');
• SELECT count(*) FROM company WHERE js @@ 'relationships(#.title
in ("CEO", "CTO") AND #.person.first_name = "Neil")'::jsquery;
• SELECT * FROM company WHERE
 ANYELEMENT OF js-> 'relationships' AS t (
 t->>'title' IN ('CEO', 'CTO') AND
 t ->'person'->>'first_name' = 'Neil');

Jsonb query: ANYELEMENT

Possible implementation steps:
• Implement ANYELEMENT just as syntactic sugar and only for

arrays.
• Support for various data types (extendable?)
• Handle ANYLEMENT as expression not subselect (problem with

alias).
• Indexing support over ANYELEMENT expressions.

Another idea about ANYLEMENENT

Functional equivalents:

• SELECT t
FROM company,
 LATERAL (SELECT t FROM
 jsonb_array_elements(js->'relationships') t) el;

• SELECT t
FROM company,
 ANYELEMENT OF js->'relationships' AS t;

Summary

• contrib/jsquery for 9.4
• Jsquery - Jsonb Query Language
• Two GIN opclasses with jsquery support
• Grab it from https://github.com/akorotkov/jsquery (branch master)

• Prototype of VODKA access method (supported by Heroku)
• New VODKA concept
• Idea of Jsonb querying in SQL

https://github.com/akorotkov/jsquery

Спасибо за внимание!

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	page0
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48
	Страница 49
	Страница 50
	Страница 51
	Страница 52
	Страница 53
	Страница 54
	Страница 55
	Страница 56
	Страница 57
	Страница 58
	Страница 59
	Страница 60
	Страница 61
	Страница 62
	Страница 63
	Страница 64
	Страница 65
	Страница 66
	Страница 67
	Страница 68
	Страница 69
	Страница 70
	Страница 71
	Страница 72
	Страница 73
	Страница 74
	Страница 75
	Страница 76
	Страница 77
	Страница 78
	Страница 79
	Страница 80
	Страница 81
	Страница 82
	Страница 83
	Страница 84
	Страница 85
	Страница 86
	Страница 87
	Страница 88
	Страница 89
	Страница 90
	Страница 91
	Страница 92
	Страница 93
	Страница 94
	Страница 95
	Страница 96
	Страница 97
	Страница 98
	Страница 99
	Страница 100
	Страница 101

