Posdgras

BoamoxxHocTn CYB[1 Postgres ona paboThi €

OOKYMEHTHOOPUEHTNUPOBAHHLIMKY Ba3amu
OAHHbIX

Alexander Korotkov, Oleg Bartunov, Teodor Sigaev
Postgres Professional

o)l PROFESSIONAL

Pos gres Oleg Bartunov, Teodor Sigaev

* Locale support

* Extendability (indexing)
e GiST (KNN), GIN, SP-GiST

* Full Text Search (FTS)
* Jsonb, VODKA
* Extensions:

* intarray
* pg_trgm -
* Itree https://www.facebook.com/oleg.bartunov
* hstore obartunov@gmail.com, teodor@sigaev.ru

° pIa ntuner https://www.facebook.com/groups/postgresql/

https://www.facebook.com/oleg.bartunov
mailto:obartunov@gmail.com
mailto:teodor@sigaev.ru
https://www.facebook.com/groups/postgresql/

o)l PROFESSIONAL

Pos gres Alexander Korotkov

* Indexed regexp search

* GIN compression & fast scan

* Fast GiST build

* Range types indexing

* Split for GiST

* Indexing for jsonb

° jsquery

* Generic WAL + create am (WIP)

Topics Subscribe | =

ol PROFE hstore jsonb json postgresql +Add term

0 S g r Search term Search term Search term

Interest over time

+ Forecast

Average 2005 2007 2009 2011 2013 2015

£
Regional interest hstore jsonb json postgresql
Region | City
Australia 100 s——
United States 15

o)l PROFESSIONAL

Pos)gres Agenda

* Semi-structured data in PostgreSQL

* Intruduction into jsonb

* Jsonb indexing

* Jsquery - Jsonb Query Language

* Jsonb GIN opclasses with JsQuery support

* Future of Jsonb querying

o)l PROFESSIONAL

POS gres Cﬂa60-CprKTprpOBaHHbIe AdaHHbIle

* Cnabo-CTpYyKTYpMUpPOBaHHbIE AaHHblIe BO3HUKAIOT OT JIEHU)

* ArpermpoBaHue CTPYKTYPUPOBAHHbIX AaHHbIX NPUBOAUT K cnabo-
CTPYKTYPUPOBAHHbIM AaHHbIM (pa3pexeHHas maTpuua)

* Bce cnabo-CTPYKTYpUpPOBaHHbIE AaHHbIE MOXHO Peann3oBaTb
CTaHAapTHbIMK cnocobamu RDBMS

* HeynobHo, npobnembl C NPOMU3BOANUTE/IBHOCTbIO
* json — Xynen cnabo-CTPYKTYPUPOBAHHbIX AAaHHbIX

* PeanbHaa npobnema — 310 schema-less naHHbIE
* PenaunoHuble CYB/[l TpyaHO nepexmnBatoT USMEHEHME CXeMbI
* Key-value (NoSQL) xpaHunuLia Takux npobiem He nmeroT

o)l PROFESSIONAL

Pos gres Relational Databases

* PenaynoHHble CYB[]l — nHTEerpaymoHHble

* Bce npunoxeHusa obuwatrotca yepes CYb/],
SQL — yHuMBepcanbHbIN A3bIK paboTbl C AaHHbIMMU
Bce nusmeHenuna s CYb/[l AoCTynHbI BCEM
N3meHeHUA cxembl 0YeHb 3aTpaTHbl, MeaJl. pennsbl

PaccunTaHbl Ha UHTEPAKTMBHYIO paboTy
* WHTepecHb! arperaTbl, @ He camu gaHHble, Hy»KeH SQL

* SQL otcnexxkunsaer TPAH3aKUMUOHHOCTb, OrpaHmnM4eHmnAa UenoCTHOCTMU...

BMeCTO YeNN0OBEKA

o)l PROFESSIONAL

Pos gres NoSQL (koHuenTyanbHble npeanocbinkm)

* CepBMCHaA apxuTeKTypa nameHuna noaxoa K Cyb/
* [MpnnoxeHune coctont ns cepsucos, SQL->HTTP
* CepBucam He HyXHa ogHa moHonnTHaa CYb/
* Yacto goctato4Ho npoctbix key-value CYB/]
* Cxema MeHAeTCca «Ha xoay», bbicTpblie penunsbl
ACID - BASE
* CepBMCbl — 3TO NPOrpamMmmbl, KOTOPbl€ MOTYT CaMM 3aHUMATbLCA arpermMpoBaHnUeEm
* CepBUCbl MOryT CamMu cneauTb 3a LEeNOCTHOCTbIO AAaHHbIX

* MHOro aaHHbIX, aHaNNTUKA, bonblLiOe KON-BO OAHOBPEMEHHbIX 3aMpocoB
* PacnpeneneHHOCTb - Knactepbl geweBbix shared-nothing mawmnH

* NoSQL —ropmn3oHTasibHaA macliTabmpyemocTb U NPOM3BOANTENBHOCTb

Pos)gres Nosal

* Key-value databases
* Ordered k-v ansa noaaep*Kn AMana3oHOB
* Column family (column-oriented) stores
* Big Table — value nmeert cTpyKTypYy:
* column families, columns, and timestamped versions (maps-of maps-of maps)
* Document databases
* Value - npon3BoabHaA CNOKHOCTb, UHAEKCDI

* UmeHa noneun, FTS — 3HauyeHune noneun

* Graph databases — 3sontoumna ordered-kv

4 o B

?

Key-Value

£ %5 5

Ordered Key-Value

=

Big Table

Column
Family

Document, Graph
Full-Text Search

smployee”

EEEmaill : "Mohana Pilla

: “Delivery

“projects"”

i

“name” : “Easy Sign

Semi-Structured Data

T emin Text
a confidential word or n
nbination used as a
when accessing

o)l PROFESSIONAL

POS gres LleflITEH,ﬂ,)K!

* [MTonHoueHHas paboTa co cnabo-CTPYKTYPMPOBAHHbIMU AAHHbIMU B
penaunoHHon CYb/]
* XpaHeHue (TMN AaHHbIX ANA XxpaHeHue key-value aaHHbIX)
* Mounck (onepaTtopbl U PYHKLUNN)
* [pon3BoAUTENBHOCTb (BMHAPHOE XpaHUAULLE, MHOEKCDI)

o)l PROFESSIONAL

Pos gres Introduction to hstore

* Hstore — key/value storage (inspired by perl hash)
'a=>1, b=>2"'::hstore

* Key, value — strings
* Get value for a key: hstore -> text
* Operators with indexing support (GiST, GIN)

Check for key: hstore ? text
Contains: hstore @> hstore

check documentations for more
* Functions for hstore manipulations (akeys, avals, skeys, svals, each,......

http://www.postgresql.org/docs/devel/static/hstore.html

o)l PROFESSIONAL

Pos gres History of hstore development

* May 16, 2003 — first version of hstore

Date: Fri, 16 May 2883 22:56:14 +248@

From: Teodor Sigaev <teodor@sigaev.ru>

To: Oleg Bartunov <oleg@sai.msu.su>», Alexey Slynko <slynko@tronet.ru>
Cc: E.Rodichewv =<er@sai.msu.su>

Subject: hash type (hstore)

NloTosa nepsaWa BepCUMA:
Zeus:~teodor/hstore.tgz

README HanwcaTek He yCnen, nNo3aToMy 30eCh:
1 i/o Tuna hstore

2 onepauns hstore->text - MIBNEYeHWE 3IHaAYWeHMs No Khody text
select 'a==q, b=>g'-='a',;
rd
q
3 isexists{hstaore), isdefined(hstore), delete(hstore,text) - NONHEA NepnoBsA adanor
4 hstaore || hstore - KoHkKaTedauws, adanor s nepne %a=({ %bh, %c),
5 text=>text - BOo3BpawaeT hstore

select 'a'=>'b’';
fcolumn?

Bce npumeps ecTk B sgl/hstore.sqgl

o)l PROFESSIONAL

Pos gres Introduction to hstore

* Hstore benefits

* In provides a flexible model for storing a semi-structured data in relational
database

* hstore has binary storage

* Hstore drawbacks

* Too simple model !
Hstore key-value model doesn't supports tree-like structures as json
(introduced in 2006, 3 years after hstore)

* Json — popular and standartized (ECMA-404 The JSON Data
Interchange Standard, JSON RFC-7159)

* Json — PostgreSQL 9.2, textual storage

o)l PROFESSIONAL

Pos}gres Hstore vs Json

* hstore ABHO BbicTpee json AaxKe Ha NPOCTbIX AAHHbIX

CREATE TABLE hstore_ test AS (SELECT
‘a=>1, b=>2, c=>3, d=>4, e=>5"::hstore AS v
FROM generate series(1,1000000));

CREATE TABLE json_test AS (SELECT

{"a":1, "b":2, "c":3, "d":4, "e":5}'::json AS v

FROM generate series(1,1000000));

SELECT sum((v->'a')::text::int) FROM json test;
851.012 ms

SELECT sum((v->'a')::int) FROM hstore test;
330.027 ms

pogggres Hstore vs Json

* PostgreSQL already has json since 9.2, which supports document-
based model, but
* It's slow, since it has no binary representation and needs to be parsed every
time
* Hstore is fast, thanks to binary representation and index support

* It's possible to convert hstore to json and vice versa, but current hstore is
limited to key-value

* Need hstore with document-based model. Share it's
binary representation with json !

o)l PROFESSIONAL

Pos gres History of hstore development

* May 16, 2003 - first (unpublished) version of hstore for PostgreSQL
7.3

* Dec, 05, 2006 - hstore is a part of PostgreSQL 8.2
(thanks, Hubert Depesz Lubaczewski!)
* May 23, 2007 - GIN index for hstore, PostgreSQL 8.3
* Sep, 20, 2010 - Andrew Gierth improved hstore, PostgreSQL 9.0

http://www.postgresql.org/message-id/9e4684ce0605031006le37a9arca20816dd278f13@mail.gmail.com
https://www.pgcon.org/2007/schedule/events/22.en.html
http://www.postgresql.org/message-id/87hc1xi9gd.fsf@news-spur.riddles.org.uk

o)l PROFESSIONAL

Pos{gres

Nested hstore

abstract = B
Oleg Bartunov <obartunov@gmail.com> 1211812 - -
to Teodor |~

MNonpaek, GONCAHW.

Title: One step forward true json data type. Nested hstore with array
support.

We present a prototype of nested hstore data type with array support. We
consider the new hstore as a step forward true json data type.

Recently, PostgreSQL got json data type, which basically is a string storage
with validity checking for stored values and some related functions. To be a
real data type, it has to have a binary representation, which could be a big
project if started from scratch. Hstore is a popular data type, we developed
years ago to facilitate working with semi-structured data in PostgreSQL. Our
idea is to extend hstore to be nested (value can be hstore) data type and
add support of arrays, so its binary representation can be shared with json.
We present a working prototype of a new hstore data type and discuss
some design and implementation issues.

pogzgres Nested hstore & jsonb

* Nested hstore at PGCon-2013, Ottawa, Canada (May 24) — thanks
Engine Yard for support !

One step forward true json data type.Nested hstore with arrays support

* Binary storage for nested data at PGCon Europe — 2013, Dublin, Ireland
(Oct 29)

Binary storage for nested data structuresand application to hstore data type

* November, 2013 — binary storage was reworked, nested hstore and
jsonb share the same storage. Andrew Dunstan joined the project.

* January, 2014 - binary storage moved to core

http://www.sai.msu.su/~megera/postgres/talks/hstore-pgcon-2013.pdf
http://www.sai.msu.su/~megera/postgres/talks/hstore-dublin-2013.pdf

o)l PROFESSIONAL

Posygres Nested hstore & jsonb

* Feb-Mar, 2014 - Peter Geoghegan joined the project, nested hstore was
cancelled in favour to jsonb (Nested hstore patch for 9.3).

* Mar 23, 2014 Andrew Dunstan committed jsonb to 9.4 branch !

pgsql: Introduce jsonb, a structured format for storing json.

Introduce jsonb, a structured format for storing json.

The new format accepts exactly the same data as the json type. However, it is
stored in a format that does not require reparsing the orgiginal text in order
to process it, making it much more suitable for indexing and other operations.
Insignificant whitespace is discarded, and the order of object keys is not
preserved. Neither are duplicate object keys kept - the later value for a given
key is the only one stored.

http://www.sigaev.ru/git/gitweb.cgi?p=hstore.git;a=summary
http://www.postgresql.org/message-id/E1WRpmB-0002et-MT@gemulon.postgresql.org

o)l PROFESSIONAL

Pos gres Jsonb vs Json

SELECT '{"c":0, "a":2,"a":1}'::json, '{"c":0, "a":2,"a":1}"'::jsonb;
json | jsonb

* json: textual storage «asis»
* jsonb: no whitespaces
* jsonb: no duplicate keys, last key win

* jsonb: keys are sorted

o)l PROFESSIONAL

Pos gres Jsonb vs Json

* Data
* 1,252,973 Delicious bookmarks

* Server
* MBA, 8 GB RAM, 256 GB SSD

* Test

"author": "mcasasl”,
"comments"™: "http://delicious.com/url/b5b3cbf9a9176fed3c27d7bdafadad22”,
"guidislink": false,
"id": "http://fdelicious.com/url/b5b3cbfBa8176fedlc2id7bdatodad22#mcasasl”,
"link"™: "http://www.theatermania.com/broadway/",
"links": [
{

"href": "htip://www.theatermania.com/broadway/",

"rel": "alternate",

"type": "text/html"

}
1,
"source”: {},
"tags": [
{
"label™: null,
"scheme": "http://delicious.com/mcasasi/",
"term": "NYC"
H

1,
"title": “Theateﬁﬂania“J
"title_detail™: {
"pbase": "http://feeds.delicious.com/v2/rss/recent?min=1&count=1068",
"language": null,
"type": "text/plain”,
"yalue": "TheaterMania"
h
"updated": "Tue, @8 Sep 2089 23:28:55 +@ega",
"wfw_commentrss": "http://feeds.delicious.com/v2/rss/url/b5b3cbf9a9176fed3ic27d7bdaf94ad22"

* Input performance - copy data to table
* Access performance - get value by key
* Search performance contains @> operator

o)l PROFESSIONAL

Pos gres Jsonb vs Json

* Data
* 1,252,973 bookmarks from Delicious in json format (js)
* The same bookmarks in jsonb format (jb)
* The same bookmarks as text (tx)

=# \dt+
List of relations
Schema | Name | Type | Owner | Size | Description
-------- Ly S Sy
public | jb | table | postgres | 1374 MB | overhead is < 4%
public | js | table | postgres | 1322 MB |
public | tx | table | postgres | 1322 MB |

o)l PROFESSIONAL

Pos gres Jsonb vs Json

* Input performance (parser)
Copy data (1,252,973 rows) as text, json,jsonb

copy tt from '/path/to/test.dump’

Text: 34s -asis
Json: 37s -json validation
Jsonb: 43 s - json validation, binary storage

pogzgres Jsonb vs Json (binary storage)

* Access performance — get value by key
* Base: SELECT js FROM js;
* Jsonb: SELECT j->>'updated' FROM jb;
* Json: SELECT j->>'updated’' FROM js;

Base: 0.6s
Jsonb: 1s 0.4
Json: 9.6 s 9

Jsonb ~ 20X faster Json

o)l PROFESSIONAL

Pos gres Jsonb vs Json

EXPLAIN ANALYZE SELECT count(*) FROM js WHERE js #>>'{tags,0,term}' = 'NYC'
QUERY PLAN

Aggregate (cost=187812.38..187812.39 rows=1 width=0)
(actual time=10054.602..10054.602 rows=1 loops=1)
-> Seq Scan on js (cost=0.00..187796.88 rows=6201 width=0)

(actual time=0.030..10054.426 rows=123 loops=1)
Filter: ((js #>> '{tags,0,term}'::text[]) = 'NYC'::text)
Rows Removed by Filter: 1252850

Planning time: 0.078 ms

Execution runtime: 10054.635 ms

(6 rows)

Json: no contains @> operator,
search first array element

o)l PROFESSIONAL

Pos gres Jsonb vs Json (binary storage)

EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN
Aggregate (cost=191521.30..191521.31 rows=1 width=0)
(actual time=1263.201..1263.201 rows=1 loops=1)
-> Seq Scan on jb (cost=0.00..191518.16 rows=1253 width=0)
(actual time=0.007..1263.065 rows=285 loops=1)
Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Rows Removed by Filter: 1252688
Planning time: 0.065 ms
Execution runtime: 1263.225 ms Execution runtime: 10054.635 ms
(6 rows)

Jsonb ~ 10X faster Json

Pos) gres Jsonb vs Json (GIN: key && value)

CREATE INDEX gin_jb_idx ON jb USING gin(jb);

EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN

Aggregate (cost=4772.72..4772.73 rows=1 width=0)
(actual time=8.486..8.486 rows=1 loops=1)
-> Bitmap Heap Scan on jb (cost=73.71..4769.59 rows=1253 width=0)
(actual time=8.049..8.462 rows=285 loops=1)
Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Heap Blocks: exact=285
-> Bitmap Index Scan on gin_jb_idx (cost=0.00..73.40 rows=1253 width=0)
(actual time=8.014..8.014 rows=285 loops=1)
Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Planning time: 0.115 ms
Execution runtime: 8.515 ms Execution runtime: 10054.635 ms
(8 rows)

Jsonb ~ 150X faster Json

o)l PROFESSIONAL

Pos gres Jsonb vs Json (GIN: hash path.value)

CREATE INDEX gin_jb_path_idx ON jb USING gin(jb jsonb_path_ops);

EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN

Aggregate (cost=4732.72..4732.73 rows=1 width=0)
(actual time=0.644..0.644 rows=1 loops=1)
-> Bitmap Heap Scan on jb (cost=33.71..4729.59 rows=1253 width=0)
(actual time=0.102..0.620 rows=285 loops=1)
Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Heap Blocks: exact=285
-> Bitmap Index Scan on gin_jb_path_idx
(cost=0.00..33.40 rows=1253 width=0) (actual time=0.062..0.062 rows=285 loops=1)
Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Planning time: 0.056 ms
Execution runtime: 0.668 ms Execution runtime: 10054.635 ms
(8 rows)

Jsonb ~ 1800X faster Json

Pos) gres MongoDB 2.6.0

* Load data-"~13 min SLOW !

Jsonb 43 s

mongoimport --host localhost -c js --type json < delicious-rss-1250k

2014-04-08T722:47:10.014+0400

2014-04-08T23:00:36.050+0400
2014-04-08T23:00:36.565+0400 check 9 1252973
2014-04-08T23:00:36.566+0400 imported 1252973 objects

* Search - ~ 1s (seqgscan) THE SAME

db.js.find({tags: {SelemMatch:{ term: "NYC"}}}).count()
285
-- 980 ms

* Search -~ Ims (indexscan) Jsonb 0.7ms

db.js.ensurelndex({"tags.term" : 1})
db.js.find({tags: {SelemMatch:{ term: "NYC"}}}).

3700 1233/second

1252000 1547/second

o)l PROFESSIONAL

Pos gres Summary: PostgreSQL 9.4 vs Mongo 2.6.0

* Operator contains @> *Table size
* json : 10 s seqgscan *postgres : 1.3Gb
* jsonb :8.5ms GIN jsonb_ops *mongo :1.8Gb
* jsonb :0.7 ms GIN jsonb_path_ops °|nput performance:
* mongo : 1.0 ms btree index *Text : 34s
* Index size ®lson - 375
: ®*Jsonb : 43s
. !sonb_ops - 636 Mb (no compression, 815Mb) mongo : 13 m
jsonb_path_ops - 295 Mb
* jsonb_path_ops (tags) - 44 Mb USING gin((jb->'tags') jsonb_path_ops
* mongo (tags) - 387 Mb
mongo (tags.term) -100 Mb

Engine Yard’

Pos) gres Citus dataset

* 3023162 reviews from Citus
1998-2000 years

* 1573 MB

{
"customer_id": "AERLYDHSBFYIP",

"product_category": "Business & Investing",
"product_group": "Book",
"product_id": "1551803542",
"product_sales_rank": 11611,
"product_subcategory": "General",
"product_title": "Start and Run a Coffee Bar (Start & Run a)",
"review_date": {

"$date": 31363200000
}s
"review_helpful_votes": O,
"review_rating": 5,
"review_votes": 10,
"similar_product_ids": [

"0471136174",

"0910627312",

"047112138X",

"0786883561",

"0201570483"

o)l PROFESSIONAL

Pos gres Citus dataset: storage in jsonb

Heap size: 1588 MB
PK size: 65 MB
GIN index on product ids: 89 MB

Table "public.customer reviews jsonb”

Column Type Modifiers

________ +_________+__

id integer | not null default
nextval('customer_reviews jsonb_id seq'

jr jsonb

Indexes:

"customer reviews jsonb pkey" PRIMARY KEY, btree (id)
"customer_reviews jsonb_similar product_ids_ idx" gin
((jr -> 'similar product ids'::text))

: :regclass)

o)l PROFESSIONAL

Posygres

Citus dataset: normalized storage

Heap size: 434 MB (main table) + 598 MB (similar products) = 1032 MB
PK size: 65 MB (main table) + 304 MB (similar products) = 369 MB
Index on similar product id: 426 MB

Table "public.customer_ reviews flat"

Column

customer_id
review date

product_subcategory
id
Indexes:

"customer_reviews flat pkey"

Type

text
integer

PRIMARY KEY, btree (id)

Modifiers

not null
not null

not null...

Table "public.customer reviews similar product”

Column Type Modifiers
____________________ +_________+___________
product_id integer | not null
similar_ product id bpchar not null

Indexes:

"similar product product id idx"
btree (product _id)
"similar_product _similar_ product _id idx"
btree (similar product_id COLLATE "C")

14 168 514 rows

o)l PROFESSIONAL

Pos gres Citus dataset: storage using array

Heap size: 719 MB
PK size: 65 MB
GIN index on product ids: 87 MB

Table "public.customer_reviews_array"

Column Type Modifiers
______________________ +_________________+_____________
id integer not null ..
customer_id text not null
review date date not null

similar product ids character(10)[]

Indexes:
"customer _reviews_array_pkey" PRIMARY KEY, btree (id)
"customer_reviews array_similar_product_ids idx gin
(similar product _ids COLLATE "C")

pogzgres Citus dataset: storage size

2000
1800
1600
1400

1200

similar_products_idx

B pkey
B heap

1000

800

600

400

200

0

poggres Citus dataset: storage conclusion

* Array storage is most compact. It doesn't have to store
keys. Storage of similar ids as an array is very space
efficient as well. However, it's not as flexible as jsonb.

* GIN handles duplicates very efficient.

* Jsonb and flat versions have about same size. Each
version has its own overhead. Jsonb stores key names
and extra headers. Flat version has to store extra tuple
headers and larger btree indexes.

o)l PROFESSIONAL

POS gres Querylng ObjECtS by 1D

1000

0 Count flat array jsonb

1000 4ms 040ms 0,45 ms

H flat

® array 10 000 40 ms 3 ms 3,5ms

jsonb

10

100 000 357 ms 24 ms 30 ms

0,1
1000 10000 100000

o)l PROFESSIONAL

Pos{gres

1000

100

10

0,1

0,01

256

Querying similar objects

4099

83577

Count
16
W flat
® array 256
jsonb
4099
83577

flat, ms array, ms

0,2
1
15

200

0,06
0,2
4,5

33

jsonb, ms
0,1

0,3

6

77

pogzgres Citus dataset: querying objects

* With flat storage you have to query two tables in order
to assemble objects. That gives significant overhead to
flat storage.

* Performace of array and jsonb version is about the same.
Array version is slightly faster because its storage is more
compact.

Pos) gres Jsonb (Apr, 2014)

* Documentation
* JSON Types, JSON Functions and Operators

* There are many functionality left in nested hstore
* Can be an extension

* Need query language for jsonb

* <,>,&& ... operators for values
a.b.c.d && [1,2,10]

* Structural queries on paths
*.d && [1,2,10]
* Indexes !

http://www.postgresql.org/docs/devel/static/datatype-json.html
http://www.postgresql.org/docs/devel/static/functions-json.html

o)l PROFESSIONAL

Pos gres Jsonb query

Currently, one can search jsonb data using:

* Contains operators - jsonb @> jsonb, jsonb <@ jsonb (GIN indexes)
jb @> '{"tags":[{"term":"N'YC"}]}"::jsonb
Keys should be specified from root

* Equivalence operator — jsonb = jsonb (GIN indexes)

* Exists operators — jsonb ? text, jsonb ?! text[], jsonb ?& text[] (GIN indexes)
jb WHERE jb ?| '{tags,links}'
Only root keys supported

* Operators on jsonb parts (functional indexes)
SELECT ('{"a": {"b":5}}":;jsonb ->'a/->>Db")::int > 2;
CREATE INDEX ... USING BTREE ((jb->'a’->>'b")::int);
Very cumbersome, too many functional indexes

o)l PROFESSIONAL

Pos gres Jsonb querying an array: simple case

Find bookmarks with tag « NYC»:

SELECT *
FROM js
WHERE jS @> I{Iltagsll:[{IlterII:IINYCII}]}I;

Pos) gres Jsonb querying an array: complex case

Find companies where CEO or CTO is called Neil.

One could write...

SELECT * FROM company
WHERE js @> '{"relationships":[{"person":
{"first _name":"Neil"}}]}' AND
(js @ '{"relationships":[{"title":"CTO"}]}"' OR
js @> '{"relationships":[{"title":"CEO"}]}"');

pogzgres Jsonb querying an array: complex case

Each «@>» is processed independently.
SELECT * FROM company
WHERE js @> '{"relationships":[{"person":
{"first _name":"Neil"}}]}' AND
(js @ '{"relationships":[{"title":"CTO"}]}"' OR
js @> '{"relationships":[{"title":"CEO"}]}");

Actually, this query searches for companies with some
CEO or CTO and someone called Neuil...

o)l PROFESSIONAL

Pos gres Jsonb querying an array: complex case

The correct version is so.

SELECT * FROM company
WHERE js @ '{"relationships”:[{"title"”:"CEQ",
"person”:{"first_name”:"Neil”}}1}" OR
js @ '{"relationships”:[{"title":"CTO",
"person” :{"first_name”:"Neil"}}1}";
When constructing complex conditions over same array

element, query length can grow exponentially.

pogzgres Jsonb querying an array: another approach

Using subselect and jsonb_array elements:

SELECT * FROM company
WHERE EXISTS (
SELECT 1
FROM jsonb_array_elements(js -> 'relationships’) t
WHERE t->>'title’ IN ('CEO', 'CTO') AND
t ->'person’'->>"first_name' = 'Neil');

o)l PROFESSIONAL

Pos gres Jsonb querying an array: summary

Using « @>» Using subselect and
* Pro jsonb_array_elements
* Indexing support * Pro
* COns * Full power of SQL can be used to
* Checks only equality for scalars c express condition over element
* cons

* Hard to explain complex logic
* No indexing support

* Heavy syntax

o)l PROFESSIONAL

Pos gres Jsonb query

* Need Jsonb query language
* Simple and effective way to search in arrays (and other iterative searches)
* More comparison operators
* Types support

* Schema support (constraints on keys, values)
* Indexes support

* Introduce Jsquery - textual data type and @@ match operator

jsonb @@ jsquery

o)l PROFESSIONAL

Pos gres Jsonb query language (Jsquery)

* # - any element array path ::= key
e o , o | path '.' key_any
E : X s b.# = X
SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# = 2'; | NOT " key any
* % - any key ey e
SELECT "{"a": {"b": [1,2,3]}}'::jsonb @@ '%.b.# = 2'; | '#'
. ||%|
* * - anything g
SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '*.# = 2'; | STRING
e S - current element
_ key any ::=key
select '"{"a": {"b": [1,2,3]1}}'::jsonb @@ 'a.b.# ($ =2 OR $ < 3)"'; | NOT
* Use "double quotes" for key !
select 'al."12222" < 111'::jsquery;

o)l PROFESSIONAL

Pos{gres

Jsonb query language (Jsquery)

Expr

::= path value_expr

| path HINT value_expr
| NOT expr

| NOT HINT value_expr
| NOT value_expr

| path ‘(' expr')’

| (" expr’)’

| expr AND expr

| expr OR expr

value_expr
.:='="scalar_value

| IN'(' value_list ')’
| '="array

=' ®!

<' NUMERIC

<''=' NUMERIC

>' NUMERIC

>''=' NUMERIC

'@' '>' array

| '<"'@" array

| '&' '&" array

| IS ARRAY

| IS NUMERIC

| IS OBJECT

| IS STRING

| IS BOOLEAN

path ::=key
| path '.' key_any
| NOT "' key_any
key ="
| '#
| '%'
| 'S
| STRING
key any ::=key
| NOT

value list

array

::=scalar_value
| value list',' scalar value

:="[' value list']'

scalar value

::=null
| STRING
| true
| false
| NUMERIC
| OBJECT

o)l PROFESSIONAL

Pos{gres

Jsonb query language (Jsquery)

* Scalar
select "{"a": {"b": [1,2,3]}}'::jsonb @@ "a.b.# IN (1,2,5)";
* Test for key existence
select '"{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b = *
* Array overlap
select '"{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b && [1,2,5]";
* Array contains
select '{"a": {"b": [1,2,3]1}}'::jsonb @@ 'a.b @> [1,2]"';
* Array contained
select "{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b <@ [1,2,3,4,5]";

value_expr
.:='="scalar_value
| IN (' value_list ')’
| '="array
| '<' NUMERIC
| '<''=' NUMERIC
| '>' NUMERIC
| '>''=" NUMERIC
| ‘@' '>' array
| '<''@"' array
| '&' '&'" array
| IS ARRAY
| IS NUMERIC
| IS OBJECT
| IS STRING
| IS BOOLEAN

o)l PROFESSIONAL

Pos{gres

Jsonb query language (Jsquery)

* Type checking IS BOOLEAN
select '{"x": true}' @@ 'x IS boolean'::7jsquery, IS NUMERIC
"{"x": 0.1}' @@ 'x IS numeric'::jsquery;
?column? | ?column? IS ARRAY
__________ +__________
t | t IS OBJECT
select '{"a":{"a":1}}' @@ 'a IS object'::jsquery; IS STRING
?column?
t
select "{"a":["xxx"]}"' @@ 'a IS array'::jsquery, '["xxx"]' @@ '$ IS array'::jsquery;

?column? | ?column?
__________ +__________

t

o)l PROFESSIONAL

Pos gres Jsonb query language (Jsquery)

* How many products are similar to "BOO0089778" and have
product_sales_rank in range between 10000-20000 ?

* SQL
SELECT count(*) FROM jr WHERE (jr->>'product_sales_rank')::int > 10000
and (jr->> 'product_sales_rank')::int < 20000 and
....boring stuff

* Jsquery
SELECT count(*) FROM jr WHERE jr @@ ' similar_product_ids &&
["BO0O0089778"] AND product_sales_rank($ > 10000 AND $ <20000)'

* Mongodb

db.reviews.find({ $and :[{similar_product_ids: { $in ["BOO0089778"]}},
{product_sales_rank:{$gt:10000, $1t:20000}1}] }).count()

o)l PROFESSIONAL

Pos gres «#», «*», «%» usage rules

Each usage of «#», «*», «%» means separate element

* Find companies where CEO or CTO is called Neil.

SELECT count(*) FROM company WHERE js @@ 'relationships.#(title in
("CEO", "CTO") AND person.first name = "Neil")'::jsquery;
count

* Find companies with some CEO or CTO and someone called Neil

SELECT count(*) FROM company WHERE js @@ 'relationships(#.title in
("CEO", "CTO") AND #.person.first name = "Neil")'::jsquery;
count

Pos) gres Jsonb query language (Jsquery)

Aggregate (cost=191517.30..191517.31 rows=1 width=0) (actual time=1039.422..1039.423 rows=1 loops=1)

Buffers: shared hit=97841 read=78011
-> Seq Scan on jb (cost=0.00..191514.16 rows=1253 width=0) (actual time=0.006..1039.310 rows=285 loops=1)

Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Rows Removed by Filter: 1252688
Buffers: shared hit=97841 read=78011
Planning time: ©0.074 ms
Execution time: 1039.444 ms
explain(analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
QUERY PLAN

Aggregate (actual time=891.707..891.707 rows=1 loops=1)
-> Seq Scan on jb (actual time=0.010..891.553 rows=285 loops=1)

Filter: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Rows Removed by Filter: 1252688
Execution time: 891.745 ms

o)l PROFESSIONAL

Pos gres Jsquery (indexes)

* GIN opclasses with jsquery support
* jsonb_value path ops — use Bloom filtering for key matching
"a":{"b":{"c":10}}} » 10.(bloom(a) or bloom(b) or bloom(c))

* Good for key matching (wildcard support) , not good for range query

* jsonb_path_value ops — hash path (like jsonb_path_ops)
"a'{"b":{"c":10}}} » hash(a.b.c).10
* No wildcard support, no problem with ranges

List of relations

Schema | Name | Type | Owner | Table | Size | Description
———————— Lt T T LT T T Sk T
public | jb | table | postgres | | 1374 MB |
public | jb_value path_idx | index | postgres | jb | 306 MB |
public | jb_gin_idx | index | postgres | jb | 544 MB |
public | jb_path_value_ idx | index | postgres | jb | 306 MB |
public | jb_path_idx | index | postgres | jb | 251 MB |

o)l PROFESSIONAL

Pos gres Jsquery (indexes)

explain(analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
QUERY PLAN
Aggregate (actual time=0.609..0.609 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.115..0.580 rows=285 loops=1)
Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_value path_idx (actual time=0.073..0.073 rows=285
loops=1)
Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Execution time: 0.634 ms
(7 rows)

o)l PROFESSIONAL

Pos gres Jsquery (indexes)

explain(analyze,costs off) select count(*) from jb where jb @@ '*.term = "NYC"';
QUERY PLAN
Aggregate (actual time=0.688..0.688 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.145..0.660 rows=285 loops=1)
Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_value path_idx (actual time=0.113..0.113 rows=285
loops=1)
Index Cond: (jb @@ '*."term" = "NYC"'::jsquery)
Execution time: ©0.716 ms
(7 rows)

o)l PROFESSIONAL

Pos gres Jsquery (indexes)

explain (analyze, costs off) select count(*) from jr where
jr @@ ' similar_product _ids && ["B0©0089778"]"';
QUERY PLAN
Aggregate (actual time=0.359..0.359 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.084..0.337 rows=185 loops=1)
Recheck Cond: (jr @@ '"similar product ids" && ["B000089778"]'::jsquery)
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_path_value idx (actual time=0.057..0.057 rows=185
loops=1)
Index Cond: (jr @@ '"similar_product ids" && ["B0O00O89778"]'::jsquery)
Execution time: 0.394 ms
(7 rows)

o)l PROFESSIONAL

Pos gres Jsquery (indexes)

* No statistics, no planning :(

Not selective, better not use index!

explain (analyze, costs off) select count(*) from jr wher
jr @@ ' similar_product ids && ["B000089778"]
AND product_sales rank($ > 10000 AND $ < 20000)';
QUERY PLAN
Aggregate (actual time=126.149..126.149 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=126.057..126.143 rows=45 loops=1)
Recheck Cond: (jr @@ '("similar_product ids" && ["B0O00089778"] &
"product_sales rank"($ > 10000 & $ < 20000))'::jsquery)
Heap Blocks: exact=45
-> Bitmap Index Scan on jr_path_value_idx (actual time=126.029..126.029
rows=45 loops=1)
Index Cond: (jr @@ '("similar_product _ids" && ["B000089778"] &
"product _sales rank"($ > 10000 & $ < 20000))'::jsquery)
Execution time: 129.309 ms !!! No statistics

o)l PROFESSIONAL

db.reviews.find({ Sand :[{similar_product_ids: { Sin:["B000089778"]}},
.explain()

"millis" : 7,
"indexBounds" : {
"similar_product_ids" : [
[
"B0O00089778",
"B0O00089778"

{product_sales_rank:{Sgt:10000, SIt:20000}}] })

index size = 400 MB just for similar_product_ids !!!

o)l PROFESSIONAL

Pos gres Jsquery (indexes)

* If we rewrite query and use planner

explain (analyze,costs off) select count(*) from jr where
jr @@ ' similar_product _ids && ["B000089778"]"
and (jr->>'product_sales rank')::int>10000 and (jr->>'product_sales rank')::int<20000;

Aggregate (actual time=0.479..0.479 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.079..0.472 rows=45 loops=1)
Recheck Cond: (jr @@ '"similar product ids" && ["B000089778"]'::jsquery)
Filter: ((((jr ->> 'product _sales rank'::text))::integer > 10000) AND

(((jr ->> 'product_sales rank'::text))::integer < 20000))
Rows Removed by Filter: 140

Heap Blocks: exact=107
-> Bitmap Index Scan on jr_path_value_idx (actual time=0.041..0.041 rows=185
loops=1)

Index Cond: (jr @@ '"similar_product ids" && ["B000089778"]'::jsquery)
Execution time: ©0.506 ms Potentially, query could be faster Mongo !

o)l PROFESSIONAL

Pos gres Jsquery (optimizer) — NEW !

* Jsquery now has built-in simple optimiser.

explain (analyze, costs off) select count(*) from jr where
jr @@ 'similar product _ids && ["B000089778"]
AND product_sales rank($ > 10000 AND $ < 20000)'

Aggregate (actual time=0.422..0.422 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1)

Recheck Cond: (jr @@ '("similar_product ids" && ["B0©0089778"] AND
"product_sales rank"($ > 10000 AND $ < 20000))'::jsquery)

Rows Removed by Index Recheck: 140

Heap Blocks: exact=107

-> Bitmap Index Scan on jr_path_value idx (actual time=0.060..0.060
rows=185 loops=1)

Index Cond: (jr @@ '("similar product _ids" && ["B000089778"] AND

"product_sales rank"($ > 10000 AND $ < 20000))'::jsquery)

Execution time: ©.480 ms vs 7 ms MongoDB !

o)l PROFESSIONAL

Pos gres Jsquery (optimizer) — NEW !

* Since GIN opclasses can't expose something special to explain output,
jsquery optimiser has its own explain functions:

* text gin_debug_query_path_value(jsquery) — explain for jsonb_path_value_ops
SELECT gin_debug_query_path_value('x = 1 AND (*.y =1 ORy = 2)');
gin_debug_query_path_value

X = , entry 0 +
* text gin_debug_query_value_path(jsquery) — explain for jsonb_value_path_ops

SELECT gin_debug_query_value_path('x = 1 AND (*.y =1 ORy = 2)');
gin_debug_query_value_path

AND +
Xx =1, entry 0 +
OR +

*.y =1 , entry 1 +
y =2, entry 2 +

pogzgres Jsquery (optimizer) — NEW !

Jsquery now has built-in optimiser for simple queries.
Analyze query tree and push non-selective parts to recheck (like filter)

Selectivity classes:
1) Equality (x = c)
2) Range (cl < x<c2)
3) Inequality (c > c1)
4) Is (x is type)
5) Any (x = *¥)

o)l PROFESSIONAL

Pos gres Jsquery (optimizer) — NEW !

AND children can be put into recheck.

SELECT gin_debug_query_path_value('x = 1 AND y > 0');
gin_debug_query_path_value

While OR children can't. We can't handle false negatives.

SELECT gin_debug_query_path_value('x =1 ORy > 0');
gin_debug_query_path_value

o)l PROFESSIONAL

Pos gres Jsquery (optimizer) — NEW !

Can't do much with NOT, because hash is lossy. After NOT false positives
turns into false negatives which we can't handle.

SELECT gin_debug_query_path_value('x = 1 AND (NOT yv = 0)"');
gin_debug_query_path_value

o)l PROFESSIONAL

POS gres quuery (Opl‘lmlzer) — NEW |

* Jsquery optimiser pushes non-selective operators to recheck

explain (analyze, costs off) select count(*) from jr where
jr @@ 'similar_product _ids && ["B000089778"]
AND product _sales rank($ > 10000 AND $ < 20000)'

Aggregate (actual time=0.422..0.422 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1)

Recheck Cond: (jr @@ '("similar_product ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)

Rows Removed by Index Recheck: 140

Heap Blocks: exact=107

-> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060
rows=185 loops=1)

Index Cond: (jr @@ '("similar_ product _ids" && ["B000089778"] AND

"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
Execution time: 0.480 ms

Pos) gres Jsquery (HINTING) — NEW |

* Jsquery now has HINTING (if you don't like optimiser)!

explain (analyze, costs off) select count(*) from jr where Jjr @@ 'product sales rank > 10000’
Aggregate (actual time=2507.410..2507.410 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=1118.814..2352.286 rows=2373140 loops=1)
Recheck Cond: (jr @@ '"product_sales rank"™ > 10000'::jsquery)
Heap Blocks: exact=201209
-> Bitmap Index Scan on jr_path_value_idx (actual time=1052.483..1052.48
rows=2373140 loops=1)
Index Cond: (jr @@ '"product sales rank" > 10000'::jsquery)
Execution time: 2524.951 ms

* Better not to use index — HINT /* --noindex */

explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank /*-- noindex */ >
10000 ;
Aggregate (actual time=1376.262..1376.262 rows=1 loops=1)
-> Seq Scan on jr (actual time=0.013..1222.123 rows=2373140 loops=1)
Filter: (jr @@ '"product_sales_rank" /*-- noindex */ > 10000'::jsquery)
Rows Removed by Filter: 650022
Execution time: 1376.284 ms

Pos) gres Jsquery (HINTING) — NEW |

* If you know that inequality is selective then use HINT /* --index */

explain (analyze, costs off) select count(*) from jr where jr @@ 'product sales rank /*-- index*/ >
3000000 AND review_rating = 5'::jsquery;
QUERY PLAN
Aggregate (actual time=12.307..12.307 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=11.259..12.244 rows=739 loops=1)

Recheck Cond: (jr @@ '("product _sales rank" /*-- index */ > 3000000 AND "review rating" =
5)'::jsquery)

Heap Blocks: exact=705

-> Bitmap Index Scan on jr_path_value_idx (actual time=11.179..11.179 rows=739 loops=1)

Index Cond: (jr @@ '("product_sales rank" /*-- index */ > 3000000 AND "review_rating" =
5)'::jsquery)
Execution time: 12.359 ms vs 1709.901 ms (without hint)

(7 rows)

pogzgres Jsquery use case: schema specification

CREATE TABLE js (
id serial primary key,
vV jsonb,
CHECK(v @@ 'name IS STRING AND
coords IS ARRAY AND
NOT coords.# (NOT (
X IS NUMERIC AND
y IS NUMERIC))'::jsquery));

Non-numeric coordinates don't exist => All coordinates are numeric

o)l PROFESSIONAL

Pos gres Jsquery use case: schema specification

INSERT INTO js (v) VALUES ('{"name": "abc", "coords": [{"x":

1, "y"i 2}, {"X": 3, "y"i 4}]});
INSERT 01

* # INSERT INTO js (v) VALUES ('{"name": 1, "coords": [{"x":
1] II: 2}, {II II. II II., 1] II: 4}]}),

ERROR new row for relatlon "js" violates check constraint
"js_v_check™

* # INSERT INTO js (v) VALUES ('{"name": "abc", "coords": [{"x":

1, 1] ||: 2}, {ll ll. "ZZZ", 1 ll: 4}]}),
ERROR new row for relatlon "js" violates check constraint
"js_v_check"

o)l PROFESSIONAL

Pos gres Contrib/jsquery

* Jsquery index support is quite efficient (0.5 msvs Mongo 7 ms !)

* Future direction
* Make jsquery planner friendly
* Need statistics for jsonb

* Availability
* Jsquery + opclasses are available as extensions
Grab it from https://github.com/akorotkov/jsquery (branch master),
we need your feedback !
We will release it after PostgreSQL 9.4 release
Need real sample data and queries !

https://github.com/akorotkov/jsquery

o)l PROFESSIONAL

Pos{gres < (ﬁ

Ordered Key-Value Big Table

Key-Value

Stop following me, you fucking freaks!

Document,
Full-Text Search

?EI

fﬂl

PostgreSQL 9.4+

fﬁl

.

* Open-source

* Relational database

Time WValue
stamp

Column
Family

* Strong support of json

“"Mohana Pilla'
“Delivery b

“projects” L
i
“name " “Easy Sign
_____________ !_"___Seml'-Structured‘D_altE__ I
Plain Text

? a confidential word or n
nbination used as a — to
when accessing
en 8 and 15 characters

umber and may ~

o)l PROFESSIONAL

Pos gres Better indexing ...

* GIN is a proven and effective index access method

* Need indexing for jsonb with operations on paths (no hash!) and values
* B-tree in entry tree is not good - length limit, no prefix compression

List of relations

Schema | Name | Type | Owner | Table | Size | Description
———————— T i S e e E e
public | jb | table | postgres | | 1374 MB |

public | jb_uniq_paths | table | postgres | | 912 MB |

public | jb_unig_paths_btree idx | index | postgres | jb_uniq_paths | 885 MB |text_pattern_ops
public | jb_uniqg_paths_spgist idx | index | postgres | jb_uniq _paths | 598 MB |now much less !

o)l PROFESSIONAL

POS gres BetterlndeX”]g

* Provide interface to change hardcoded B-tree in Entry tree
* Use spgist opclass for storing paths and values as is (strings hashed in values)

* We may go further - provide interface to change hardcoded B-tree in
posting tree
* GIS aware full text search !

* New index access method

CREATE INDEX ... USING VODKA

POS . SFFSSeIONg GIN HiStOry

* Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006
by Oleg Bartunov and Teodor Sigaev

Generalized Inverted Index

* An inverted index is an index structure
storing a set of (key, posting list) pairs,
where 'posting list' is a set of documents in
which the key occurs.

* Generalized means that the index does not
know which operation it accelerates. It
works with custom strategies, defined for
specific data types. GIN is similar to GiST
and differs from B-Tree indices, which have
predefined, comparison-based operations.

Pos) gres GIN History

* Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006
by Oleg Bartunov and Teodor Sigaev

* Supported by JFG Networks (France)

* «Gin stands for Generalized Inverted iNdex and should be considered as
a genie, not a drink.»

* Alexander Korotkov, Heikki Linnakangas have joined GIN++ development
in 2013

Pos \ gres GIN History

* From GIN Readme, posted in -hackers, 2006-04-26

TODO

Nearest future:

* Opclasses for all types (no programming, just many catalog changes).

Distant future:

* Replace B-tree of entries to something like GiST (VODKA ! 2014)
* Add multicolumn support

* Optimize insert operations (background index insertion)

Pos{gres

o)l PROFESSIONAL

"product_group": "Book",
"product_sales_rank": 15000

"product_group": "Music",
"product_sales_rank": 25000

¥aX0 0SX0 £ X0 §4%0 dnoib6~jonpoud

d

000G | Yuel sajes jonpod

1 28X0 V6X0 14%X0 42x0 dnosB jonpoud

GIN index structure for jsonb

Posting lists/trees

—>» iptr1 iptr2

o
o) - 3 » iptri iptr2 iptr3 iptr4
o 3 @
o [eR o)
5| |8 4
- - < ~» iptr1 | iptr2 | iptr3 | iptrd4 | iptr5
D QD @
D (0] (0]
lfn lm
§ § » iptri iptr2 | iptr3
-~ -~
-+ n
(@) ()}
o o
o o
o o

-

o)l PROFESSIONAL

Pos{gres

{
"product_group": "Book",
"product_sales_rank": 15000
] .
{
"product_group": "Music", §
"product_sales_rank": 25000 gz
} 2
§

1onpo.d

\
J/
g

sAay 1o} 881} xipey

dno.

Ox2F OxF5
OxF1 Ox17
0x9A 0x50
0xB2 0xD4

000G}

juel sgje

.
<

0000¢

000S¢

souswiNU 10} 981} Aleuiq

081} Aus 1 S19-dS

Vodka index structure for jsonb

Posting lists/trees

iptr1 iptr2

iptr1 iptr2 | iptr3 | iptrd

iptr1 iptr2 | iptr3 | iptr4 | iptr5
iptr1 iptr2 | iptr3

-

o)l PROFESSIONAL

Pos{gres

* Delicious bookmarks, mostly text data

set maintenance work mem = '1GB';

Schema | Name
________ oo e e e e e e e e e e e e e - ==
public | jb
public | jb_value path_1idx
public | jb_gin_idx
public | jb_path_value_ 1idx
public | jb_path_idx
public | jb_vodka 1idx

iC |

jb_vodka_ idx5

List of relations

Type

Owner

postgres
postgres
postgres
postgres
postgres
postgres
postgres

Table

Size

1374 MB

306
544
306
251
409
325

MB
MB
MB
MB
MB
MB

CREATE INDEX ... USING VODKA

Description

1252973 rows

98769.
129860.
100560.

68880.
.865
174627 .

185362

096
859
313
320

234 new spgist

Pos) gorsseos CREATE INDEX ... USING VODKA

select count(*) from jb where jb @@ 'tags.#.term = "NYC";
Aggregate (actual time=0.423..0.423 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.146..0.404 rows=285 loops=1)
Recheck Cond: (jb @@ "tags".#."term" = "NYC":;jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_vodka_idx (actual time=0.108..0.108 rows=285 loops=1)
Index Cond: (jb @@ "tags".#."term" = "NYC"::;jsquery)

Execution time: 0.456 ms (0.634 ms, GIN jsonb_value_path_ops)

select count(*) from jb where jb @@ '* .term = "NYC";
Aggregate (actual time=0.495..0.495 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.245..0.474 rows=285 loops=1)
Recheck Cond: (jb @@ '*."term" = "NYC":;jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_vodka, idx (actual time=0.214..0.214 rows=285 loops=1)
Index Cond: (jb @@ '*."term" = "NYC":;jsquery)

Execution time: 0.526 ms (0.716 ms, GIN jsonb_path_value_ops)

Posdgres CREATE INDEX ... USING VODKA

* CITUS data, text and numeric

set maintenance work mem = "'1GB';

List of relations

Schema | Name | Type | Owner | Table | Size | Description

-------- T T T e

public | jr | table | postgres | | 1573 MB | 3023162 rows

public | jr_value path_idx | index | postgres | jr | 196 MB | 79180.120

public | jr_gin_idx | index | postgres | jr | 235 MB | 111814.929

public | jr_path_value idx | index | postgres | jr | 196 MB | 73369.713

public | jr_path_idx | index | postgres | jr | 180 MB | 48981.307

public | jr_vodka_ idx3 | index | postgres | jr | 240 MB | 155714.777

public | jr_vodka idx4 | index | postgres | jr | 211 MB | 169440.130 new spgist

Pos) gorsseos CREATE INDEX ... USING VODKA

explain (analyze, costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["BO0O0089778"]";
QUERY PLAN
Aggregate (actual time=0.200..0.200 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.090..0.183 rows=185 loops=1)
Recheck Cond: (jr @@ "'similar_product_ids" &é& ["BO0O0089778"]":;jsquery)
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_vodka, idx (actual time=0.077..0.077 rows=185 loops=1)
Index Cond: (jr @@ "'similar_product_ids" && ["BOO0089778"]'":;jsquery)

Execution time: 0.237 ms (0.394 ms, GIN jsonb_path_value_idx)
(7 rows)

o)l PROFESSIONAL

Pos gres There are can be different flavors of Vodka

STEPANYCH

(uasmvsxm' Vi | SVADEBNAYA

-
! = MFGENL EM Y g5l
; Moskovskava
| i P u
{

USSIAN V

ey

s

p— =7 :

varRai g..::.,......
OEAH
X

N LAY

o

&

pogzgres New VODKA concept

Radix-tree * Posting list/tree is just a way of
effective duplicate storage

* Entry tree can consist of
multiple levels of different
access methods

* VODKA is a way to combine
different access method in

ot single index: VODKA

. Posting-trees

, forest CONNECTING INDEXES

+ R-trees forest

o)l PROFESSIONAL

Pos gres JsQuery limitations

* Variables are always on the left size
Xx =1 - 0K
1 = x - Error!
* No calculations in query
X +y =0 — Error!
* No extra datatypes and search operators
point(x,y) <@ '((0,0),(1,1),(2,1),(1,0))"'::polygon

pogzgres JsQuery limitations

Users want jsquery to be as rich as SQL...

pogzgres JsQuery limitations

Users want jsquery to be as rich as SQL ...
... But we will discourage them ;)

o)l PROFESSIONAL

Pos gres JsQuery language goals

* Provide rich enough query language for jsonb in 9.4.

* Indexing support for 'jsonb @@ jsquery':
* Two GIN opclasses are in jsquery itself
* VODKA opclasses was tested on jsquery

It's NOT intended to be solution for jsonb querying in
long term!

pogzgres What JsQuery is NOT?

It's not desighed to be another extendable, full weight:
* Parser
* Executor
* Optimizer

It's NOT SQL inside SQL.

o)l PROFESSIONAL

Pos gres Jsonb querying an array: summary

Using « @>» Using subselect and JsQuery
* Pro jsonb_array elements * Pro
* Indexing support * Pro * Indexing support
* Cons * SQL-rich * Rich enough for typical
. applications
* Checks only equality for * COns . PP
scalars * No indexing support Cons
* Hard to explain complex * Heavy syntax * Not extendable
logic

Still looking for a better solution!

Pogzgres Jsonb query: future

Users want jsonb query language to be as rich
as SQL. How to satisfy them?..

pogzgres Jsonb query: future

Users want jsonb query language to be as rich
as SQL. How to satisfy them?

Bring all required features to SQL-level!

Pos) gres Jsonb query: future

Functional equivalents:

* SELECT * FROM company WHERE EXISTS (SELECT 1
FROM jsonb_array_elements(js->'relationships’) t
WHERE t->>'title' IN ('CEQ', 'CTO') AND
t->"person’'->>"'first_name’ = 'Neil');
* SELECT count(*) FROM company WHERE js @@ 'relationships(#.title
in ("CEQ", "CTO") AND #.person.first_name = "Neil”)'::jsquery;
* SELECT * FROM company WHERE
ANYELEMENT OF js-> 'relationships’ AS t (
t->>"title’ IN ('CEO', "CTO') AND
t ->'person’'->>"first_name’' = 'Neil’);

o)l PROFESSIONAL

Pos gres Jsonb query: ANYELEMENT

Possible implementation steps:

* Implement ANYELEMENT just as syntactic sugar and only for
arrays.

* Support for various data types (extendable?)

* Handle ANYLEMENT as expression not subselect (problem with
alias).

* Indexing support over ANYELEMENT expressions.

Pos) gres Another idea about ANYLEMENENT

Functional equivalents:

* SELECT t
FROM company,
LATERAL (SELECT t FROM
jsonb_array_elements(js->'relationships’) t) el;

* SELECT t
FROM company,
ANYELEMENT OF js->'relationships’' AS t;

Posdgres summary

* contrib/jsquery for 9.4
* Jsquery - Jsonb Query Language
* Two GIN opclasses with jsquery support
* Grab it from https://github.com/akorotkov/jsquery (branch master)

* Prototype of VODKA access method (supported by Heroku)
* New VODKA concept
* Idea of Jsonb querying in SQL

https://github.com/akorotkov/jsquery

OOOOOOOOOOOO

Pos)gres

Cnacubo 3a BHMMaHue!

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	page0
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29
	Страница 30
	Страница 31
	Страница 32
	Страница 33
	Страница 34
	Страница 35
	Страница 36
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Страница 42
	Страница 43
	Страница 44
	Страница 45
	Страница 46
	Страница 47
	Страница 48
	Страница 49
	Страница 50
	Страница 51
	Страница 52
	Страница 53
	Страница 54
	Страница 55
	Страница 56
	Страница 57
	Страница 58
	Страница 59
	Страница 60
	Страница 61
	Страница 62
	Страница 63
	Страница 64
	Страница 65
	Страница 66
	Страница 67
	Страница 68
	Страница 69
	Страница 70
	Страница 71
	Страница 72
	Страница 73
	Страница 74
	Страница 75
	Страница 76
	Страница 77
	Страница 78
	Страница 79
	Страница 80
	Страница 81
	Страница 82
	Страница 83
	Страница 84
	Страница 85
	Страница 86
	Страница 87
	Страница 88
	Страница 89
	Страница 90
	Страница 91
	Страница 92
	Страница 93
	Страница 94
	Страница 95
	Страница 96
	Страница 97
	Страница 98
	Страница 99
	Страница 100
	Страница 101

