
Ontology-Based Data Access

Roman Kontchakov

Dept. of Computer Science and Inf. Systems, Birkbeck, University of London

http://www.dcs.bbk.ac.uk/~roman

acknowledgements:
Alessandro Artale, Diego Calvanese, Carsten Lutz, Mariano Rodŕıguez-Muro,

David Toman, Frank Wolter and Michael Zakharyaschev

http://www.dcs.bbk.ac.uk/~roman

Data Management: New Challenges

• Statoil (Norway)

many databases, e.g., EPDS (Exploration and Production Data Store
over 1500 tables

historical exploration data (e.g., layers of rocks, porosity),

production logs, maps, etc.
business information such as license areas and companies

direct data access by engineers (and geologists in particular) is often challenging

SIGMOD 2015, Moscow, 28.05.15 2

Data Management: New Challenges

• Statoil (Norway)

many databases, e.g., EPDS (Exploration and Production Data Store
over 1500 tables

historical exploration data (e.g., layers of rocks, porosity),

production logs, maps, etc.
business information such as license areas and companies

direct data access by engineers (and geologists in particular) is often challenging

• Siemens Energy (Germany)

power generation facilities (gas and steam turbines)

50 service centres linked to a common database

each turbine
2000 sensors
150 tables

30 GB of data is generated daily (hundreds of terabytes in total)

SIGMOD 2015, Moscow, 28.05.15 2

Ontology-Based Data Access

Aim: to achieve logical transparency in accessing data
– hide from the user where and how data is stored
– present only a conceptual view of the data
– query the data sources through the conceptual model using RDBMSs

r2(Director, Bio)

since 1990

r1(Title, Year,Director)

since 1960, european directors

Director

EuropeanDirector Movie

directedsu
b

c
la

ss

range

domain

ontology
TBox

mappings

data sources
ABox

SIGMOD 2015, Moscow, 28.05.15 3

Issues in OBDA

• what is the right ontology language?

• there is a wide spectrum of languages that differ in
expressive power and complexity of inference

• scalability to very large amounts of data is key

SIGMOD 2015, Moscow, 28.05.15 4

Issues in OBDA

• what is the right ontology language?

• there is a wide spectrum of languages that differ in
expressive power and complexity of inference

• scalability to very large amounts of data is key

• what is the query language?

SIGMOD 2015, Moscow, 28.05.15 4

Issues in OBDA

• what is the right ontology language?

• there is a wide spectrum of languages that differ in
expressive power and complexity of inference

• scalability to very large amounts of data is key

• what is the query language?

• how do we connect ontologies to data sources?

• multiple data sources and ontologies

SIGMOD 2015, Moscow, 28.05.15 4

Issues in OBDA

• what is the right ontology language?

• there is a wide spectrum of languages that differ in
expressive power and complexity of inference

• scalability to very large amounts of data is key

• what is the query language?

• how do we connect ontologies to data sources?

• multiple data sources and ontologies

• available tools?

• sound and complete reasoning
• practical scalability

SIGMOD 2015, Moscow, 28.05.15 4

Part 1

Databases and Logic

SIGMOD 2015, Moscow, 28.05.15 5

Databases: Specifying Schema

an Entity-Relationship diagram

Director

ID

name

Movie

ID

title

year

EuropeanDirector

directed

ISA

SIGMOD 2015, Moscow, 28.05.15 6

Databases: Specifying Schema

an Entity-Relationship diagram

Director

ID

name

Movie

ID

title

year

EuropeanDirector

directed

ISA

integrity constraints or dependencies (in the language of FO):

∀d (∃mdirected(d,m)→ ∃nDirector(d, n)) (foreign keys, inclusion or
∀m (∃ddirected(d,m)→ ∃tyMovie(m, t, y)) tuple-generating dependencies,
∀dn (EuropeanDirector(d, n)→ Director(d, n)) TGDs)

SIGMOD 2015, Moscow, 28.05.15 6

Databases: Specifying Schema

an Entity-Relationship diagram

Director

ID

name

Movie

ID

title

year

EuropeanDirector

directed

ISA

integrity constraints or dependencies (in the language of FO):

∀d (∃mdirected(d,m)→ ∃nDirector(d, n)) (foreign keys, inclusion or
∀m (∃ddirected(d,m)→ ∃tyMovie(m, t, y)) tuple-generating dependencies,
∀dn (EuropeanDirector(d, n)→ Director(d, n)) TGDs)

∀dn1n2 (Director(d, n1) ∧ Director(d, n2)→ (n1 = n2)) (keys, functional
∀mt1t2y1y2 (Movie(m, t1, y1) ∧Movie(m, t2, y2)→ (t1 = t2)) or

equality-generating dependencies, EGDs)

SIGMOD 2015, Moscow, 28.05.15 6

Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large
what is specified is true, everything else is false

SIGMOD 2015, Moscow, 28.05.15 7

Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large
what is specified is true, everything else is false

data:
Director = { (0, ”peter”), (1, ”quentin”), (2, ”danny”) }
EuropeanDirector = { (0, ”peter”), (2, ”danny”) }
Movie = { (10, ”DC”), (11, ”TS”) }
directed = { (0, 10), (2, 11) }

query: q(n) = ∃dDirector(d, n)

SIGMOD 2015, Moscow, 28.05.15 7

Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large
what is specified is true, everything else is false

data:
Director = { (0, ”peter”), (1, ”quentin”), (2, ”danny”) }
EuropeanDirector = { (0, ”peter”), (2, ”danny”) }
Movie = { (10, ”DC”), (11, ”TS”) }
directed = { (0, 10), (2, 11) }

query: q(n) = ∃dDirector(d, n)

answer: { ”peter”, ”quentin”, ”danny” }

NB: not having (2, ”danny”) in Director would violate the integrity constraint
∀dn (EuropeanDirector(d, n)→ Director(d, n))

SIGMOD 2015, Moscow, 28.05.15 7

Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃

SIGMOD 2015, Moscow, 28.05.15 8

Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃

data D = FO interpretation ID (CWA) ~a is an answer to q(~x) iff ID |= q(~a)

SIGMOD 2015, Moscow, 28.05.15 8

Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃

data D = FO interpretation ID (CWA) ~a is an answer to q(~x) iff ID |= q(~a)

Select-Project-Join (SPJ) = conjunctive queries (CQs):

database predicates + ∧ + ∃
database engines are optimised for CQs

Example: SELECT M.title, D.name
FROM Movie M, Directed MD, Director D
WHERE M.id = MD.movieId AND MD.directorId = D.id AND M.Year = 1982

SIGMOD 2015, Moscow, 28.05.15 8

Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃

data D = FO interpretation ID (CWA) ~a is an answer to q(~x) iff ID |= q(~a)

Select-Project-Join (SPJ) = conjunctive queries (CQs):

database predicates + ∧ + ∃
database engines are optimised for CQs

Example: SELECT M.title, D.name
FROM Movie M, Directed MD, Director D
WHERE M.id = MD.movieId AND MD.directorId = D.id AND M.Year = 1982

Datalog notation: q(~x)︸ ︷︷ ︸
head

← P1(~z1), . . . , Pk(~zk)︸ ︷︷ ︸
body

where each ~zi is a vector, which may contain answer variables ~x and
existentially quantified variables ~y (implicit)

Example: q(t, n)← Movie(m, t, 1982),directed(m,d),director(d, n)

SIGMOD 2015, Moscow, 28.05.15 8

Why do Databases Work?

query answering problem (as a recognition problem):

given a finite data D, a query q(~x) and a tuple ~a,
decide whether ID |= q(~a)

ID makes the facts in D true (and only them)

what is the complexity of CQ answering?

SIGMOD 2015, Moscow, 28.05.15 9

Why do Databases Work?

query answering problem (as a recognition problem):

given a finite data D, a query q(~x) and a tuple ~a,
decide whether ID |= q(~a)

ID makes the facts in D true (and only them)

what is the complexity of CQ answering?

naive algorithm:
guess values for all existential variables and then

evaluate the query in polynomial time in NP

can it be done better?

SIGMOD 2015, Moscow, 28.05.15 9

Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

D = {A(r, g), A(g, b), A(b, r), A(g, r), A(r, b), A(b, g)}
qG = ∃v1, . . . , vn

∧
(vi,vj)∈E

A(vi, vj)

b r

g

A

A A

D |= qG iff G is 3-colourable

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

D = {A(r, g), A(g, b), A(b, r), A(g, r), A(r, b), A(b, g)}
qG = ∃v1, . . . , vn

∧
(vi,vj)∈E

A(vi, vj)

b r

g

A

A A

D |= qG iff G is 3-colourable

in fact, the query answering algorithm runs inO(|D||q|) data is large, query is short

data complexity: only data D are counted as input (q is constant)

(Vardi, 1982): query answering is in AC0 for data complexity
SIGMOD 2015, Moscow, 28.05.15 10

Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

SIGMOD 2015, Moscow, 28.05.15 11

Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively

SIGMOD 2015, Moscow, 28.05.15 11

Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively
∀∀∀ and ∃∃∃ are AND- and OR-gates with unbounded fan-in

SIGMOD 2015, Moscow, 28.05.15 11

Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively
∀∀∀ and ∃∃∃ are AND- and OR-gates with unbounded fan-in

AC0 = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

SIGMOD 2015, Moscow, 28.05.15 11

Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively
∀∀∀ and ∃∃∃ are AND- and OR-gates with unbounded fan-in

AC0 = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

the depth of this circuit does not depend on D Vardi’s theorem

SIGMOD 2015, Moscow, 28.05.15 11

Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively
∀∀∀ and ∃∃∃ are AND- and OR-gates with unbounded fan-in

AC0 = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

the depth of this circuit does not depend on D Vardi’s theorem

NB: AC0 is a proper subclass of LOGSPACE ⊆ P (PARITY does not belong to AC0)

given a word w, decide whether its length is even

SIGMOD 2015, Moscow, 28.05.15 11

Part 2

Basics of Ontology Languages

SIGMOD 2015, Moscow, 28.05.15 12

DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

SIGMOD 2015, Moscow, 28.05.15 13

DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= Pi︸︷︷︸
role name

| P−i

SIGMOD 2015, Moscow, 28.05.15 13

DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= Pi︸︷︷︸
role name

| P−i

TBox T C1 v C2︸ ︷︷ ︸
SubClassOf(C1,C2)

and R1 v R2︸ ︷︷ ︸
SubObjectPropertyOf(R1,R2)

ABox A C(a) and R(a, b)

SIGMOD 2015, Moscow, 28.05.15 13

DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= Pi︸︷︷︸
role name

| P−i

TBox T C1 v C2︸ ︷︷ ︸
SubClassOf(C1,C2)

and R1 v R2︸ ︷︷ ︸
SubObjectPropertyOf(R1,R2)

ABox A C(a) and R(a, b)

knowledge base K = (T ,A) (ontology)

SIGMOD 2015, Moscow, 28.05.15 13

DL Semantics

interpretation I = (∆I︸︷︷︸
domain

, ·I)

john
FirstYearStudent

kate
Student

sw
GraduateCourse sp1

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

∆I

·I (interpretation function)

individuals ai → elements aIi ∈ ∆I

concept names Ai → subsets AIi ⊆ ∆I

role names Pi → binary relations P Ii ⊆ ∆I ×∆I

SIGMOD 2015, Moscow, 28.05.15 14

DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

SIGMOD 2015, Moscow, 28.05.15 15

DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

>I = ∆I and ⊥I = ∅

SIGMOD 2015, Moscow, 28.05.15 15

DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

>I = ∆I and ⊥I = ∅

(¬C)I = ∆I \ CI
j s `

SIGMOD 2015, Moscow, 28.05.15 15

DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

>I = ∆I and ⊥I = ∅

(¬C)I = ∆I \ CI
j s `

(C1 u C2)
I = CI1 ∩ CI2

(C1 t C2)
I = CI1 ∪ CI2

j k b

SIGMOD 2015, Moscow, 28.05.15 15

DL Semantics (3)

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
∃takesCourse.GraduateCourse

∃takesCourse.UndergraduateCourse

john kate
Student

sw
GraduateCourse

sp1
UndergraduateCourse

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

3RC or ∃y (R(x, y) ∧ C(y))

SIGMOD 2015, Moscow, 28.05.15 16

DL Semantics (3)

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
∃takesCourse.GraduateCourse

∃takesCourse.UndergraduateCourse

john kate
Student

sw
GraduateCourse

sp1
UndergraduateCourse

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

3RC or ∃y (R(x, y) ∧ C(y))

(∀R.C)I =
{
u | v ∈ CI, for all v with (u, v) ∈ RI

}
∀R.C = ¬∃R.¬C

SIGMOD 2015, Moscow, 28.05.15 16

DL Semantics (3)

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
∃takesCourse.GraduateCourse

∃takesCourse.UndergraduateCourse

john kate
Student

sw
GraduateCourse

sp1
UndergraduateCourse

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

3RC or ∃y (R(x, y) ∧ C(y))

(∀R.C)I =
{
u | v ∈ CI, for all v with (u, v) ∈ RI

}
∀R.C = ¬∃R.¬C

NB. “for all” is true when there are no v with (u, v) ∈ RI

e.g., sp1 ∈ (∀takesCourse.UndergraduateCourse)I

sp1 ∈ (∀takesCourse.⊥)I
2RC or ∀y (R(x, y)→ C(y))

SIGMOD 2015, Moscow, 28.05.15 16

DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

SIGMOD 2015, Moscow, 28.05.15 17

DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

I |= R1 v R2 ⇐⇒ RI1 ⊆ RI2

SIGMOD 2015, Moscow, 28.05.15 17

DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

I |= R1 v R2 ⇐⇒ RI1 ⊆ RI2

I |= C(a) ⇐⇒ aI ∈ CI

I |= R(a, b) ⇐⇒ (aI, bI) ∈ RI

SIGMOD 2015, Moscow, 28.05.15 17

DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

I |= R1 v R2 ⇐⇒ RI1 ⊆ RI2

I |= C(a) ⇐⇒ aI ∈ CI

I |= R(a, b) ⇐⇒ (aI, bI) ∈ RI

I is a model of (T ,A) if I |= α, for all inclusions α in T
and assertions α in A

SIGMOD 2015, Moscow, 28.05.15 17

Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

SIGMOD 2015, Moscow, 28.05.15 18

Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

john
j

GraduateStudent
Student

s
GraduateCourse

takesCourse

∆I1
johnI1 = j
GraduateStudentI1 = {j}
StudentI1 = {j}
GraduateCourseI1 = {s}
takesCourseI1 = {(j, s)}

is a model of (T , A)

SIGMOD 2015, Moscow, 28.05.15 18

Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

john
j

GraduateStudent
Student

s
GraduateCourse

takesCourse

∆I1
johnI1 = j
GraduateStudentI1 = {j}
StudentI1 = {j}
GraduateCourseI1 = {s}
takesCourseI1 = {(j, s)}

is a model of (T , A)

john
a

GraduateStudent
Student

GraduateCourse
takesCourse

∆I2
johnI2 = a
GraduateStudentI2 = {a}
StudentI2 = {a}
GraduateCourseI2 = {a}
takesCourseI2 = {(a, a)}

is a model of (T , A)

SIGMOD 2015, Moscow, 28.05.15 18

Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

john
j

GraduateStudent
Student

s
GraduateCourse

takesCourse

∆I1
johnI1 = j
GraduateStudentI1 = {j}
StudentI1 = {j}
GraduateCourseI1 = {s}
takesCourseI1 = {(j, s)}

is a model of (T , A)

john
a

GraduateStudent
Student

GraduateCourse
takesCourse

∆I2
johnI2 = a
GraduateStudentI2 = {a}
StudentI2 = {a}
GraduateCourseI2 = {a}
takesCourseI2 = {(a, a)}

is a model of (T , A)

john
j

GraduateStudent
Student

∆I3
johnI3 = j
GraduateStudentI3 = {j}
StudentI3 = {j}
GraduateCourseI3 = ∅
takesCourseI3 = ∅

is not a model of (T , A)

SIGMOD 2015, Moscow, 28.05.15 18

Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of K

(in other words, K implies no contradictions)

SIGMOD 2015, Moscow, 28.05.15 19

Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of K

(in other words, K implies no contradictions)

Example

T :
UndergraduateStudent v ∀takesCourse.UndergraduateCourse
UndergraduateCourse uGraduateCourse v ⊥

A:
UndergraduateStudent(john)

takesCourse(john, sw)

GraduateCourse(sw)

SIGMOD 2015, Moscow, 28.05.15 19

Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of K

(in other words, K implies no contradictions)

Example

T :
UndergraduateStudent v ∀takesCourse.UndergraduateCourse
UndergraduateCourse uGraduateCourse v ⊥

A:
UndergraduateStudent(john)

takesCourse(john, sw)

GraduateCourse(sw)

(T ,A) is inconsistent:
John (as an undergraduate student) can take only undergraduate courses.
We know, however, that he takes a graduate course,

which cannot be an undergraduate one.

SIGMOD 2015, Moscow, 28.05.15 19

Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)

SIGMOD 2015, Moscow, 28.05.15 20

Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)

T : ∀takesCourse.UndergraduateCourse v UndergraduateStudent
FirstYearStudent v ∃takesCourse.UndergraduateCourse.

SIGMOD 2015, Moscow, 28.05.15 20

Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)

T : ∀takesCourse.UndergraduateCourse v UndergraduateStudent
FirstYearStudent v ∃takesCourse.UndergraduateCourse.

j

FirstYearStudent
UndergraduateStudent

s
UndergraduateCourse

ta
ke

sC
o

urse

I1

I1 |= T
I1 |= FirstYearStudent v

UndergraduateStudent
SIGMOD 2015, Moscow, 28.05.15 20

Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)

T : ∀takesCourse.UndergraduateCourse v UndergraduateStudent
FirstYearStudent v ∃takesCourse.UndergraduateCourse.

j

FirstYearStudent
UndergraduateStudent

s
UndergraduateCourse

ta
ke

sC
o

urse

I1

I1 |= T
I1 |= FirstYearStudent v

UndergraduateStudent

j
FirstYearStudent

s
UndergraduateCourse

`

ta
ke

sC
ourse

takesCourse

I2

I2 |= T
I2 |= FirstYearStudent 6v

UndergraduateStudent

SIGMOD 2015, Moscow, 28.05.15 20

Certain Answers to CQs

q(~x) = ∃~y ϕ(~x, ~y) is a CQ with ~x = (x1, . . . , xn)

~a = (a1, . . . , an) is a tuple of individual names from A

q(~a) is the result of replacing each xi in ∃~y ϕ(~x, ~y) with ai

SIGMOD 2015, Moscow, 28.05.15 21

Certain Answers to CQs

q(~x) = ∃~y ϕ(~x, ~y) is a CQ with ~x = (x1, . . . , xn)

~a = (a1, . . . , an) is a tuple of individual names from A

q(~a) is the result of replacing each xi in ∃~y ϕ(~x, ~y) with ai

~a is a certain answer to q(~x) over T ,A (T ,A) |= q(~a)

if, for any model I of (T ,A), the sentence q(~a) is true in I
I |= q(~a)

SIGMOD 2015, Moscow, 28.05.15 21

Andrea’s Example (Schaerf, 1993)

T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)

SIGMOD 2015, Moscow, 28.05.15 22

Andrea’s Example (Schaerf, 1993)

T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)

A

john

andrea
Female

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

SIGMOD 2015, Moscow, 28.05.15 22

Andrea’s Example (Schaerf, 1993)

T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)

A

john

andrea
Female

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

A

john

andrea
Male

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

SIGMOD 2015, Moscow, 28.05.15 22

Andrea’s Example (Schaerf, 1993)

T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)

A

john

andrea
Female

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

A

john

andrea
Male

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

NB: the same as checking whether john is an instance of ∃friend.(Female u ∃loves.Male)

SIGMOD 2015, Moscow, 28.05.15 22

DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

SIGMOD 2015, Moscow, 28.05.15 23

DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

S – ALC + transitive roles

N – unqualified number restrictions ≥ q R.>

O – nominals {a}

SHOIN ≈ OWL 1.0

Q – qualified number restrictions ≥ q R.C

SIGMOD 2015, Moscow, 28.05.15 23

DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

S – ALC + transitive roles

N – unqualified number restrictions ≥ q R.>

O – nominals {a}

SHOIN ≈ OWL 1.0

Q – qualified number restrictions ≥ q R.C

F – functionality constraints ≥ 2R.> v ⊥

SHIF ≈ OWL Lite

SIGMOD 2015, Moscow, 28.05.15 23

DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

S – ALC + transitive roles

N – unqualified number restrictions ≥ q R.>

O – nominals {a}

SHOIN ≈ OWL 1.0

Q – qualified number restrictions ≥ q R.C

F – functionality constraints ≥ 2R.> v ⊥

SHIF ≈ OWL Lite

R – role chains and ∃R.Self

SROIQ ≈ OWL 2

SIGMOD 2015, Moscow, 28.05.15 23

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

SIGMOD 2015, Moscow, 28.05.15 24

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

SIGMOD 2015, Moscow, 28.05.15 24

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

CQ entailment over ALCHI KBs is 2ExpTime-complete

CQ entailment over SROIQ is not even known to be decidable

SIGMOD 2015, Moscow, 28.05.15 24

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

CQ entailment over ALCHI KBs is 2ExpTime-complete

CQ entailment over SROIQ is not even known to be decidable

DL Complexity Navigator : www.cs.man.ac.uk/~ezolin/dl

SIGMOD 2015, Moscow, 28.05.15 24

www.cs.man.ac.uk/~ezolin/dl

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

CQ entailment over ALCHI KBs is 2ExpTime-complete

CQ entailment over SROIQ is not even known to be decidable

DL Complexity Navigator : www.cs.man.ac.uk/~ezolin/dl

practical reasoners for OWL 2 DL: FaCT++, HermiT, Pellet

SIGMOD 2015, Moscow, 28.05.15 24

www.cs.man.ac.uk/~ezolin/dl

Part 3

Conjunctive Query Rewriting

SIGMOD 2015, Moscow, 28.05.15 25

Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

TBox T

+
union of

conjunctive
queries q′

ABox A ABox A

AC0

SIGMOD 2015, Moscow, 28.05.15 26

Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

TBox T

+
union of

conjunctive
queries q′

ABox A ABox A

AC0

given a CQ q(~x) over T , rewrite q(~x) into an FO query q′(~x) such that

for all A and ~a, T ,A |= q(~a) iff A |= q′(~a)

SIGMOD 2015, Moscow, 28.05.15 26

Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

TBox T

+
union of

conjunctive
queries q′

ABox A ABox A

AC0

given a CQ q(~x) over T , rewrite q(~x) into an FO query q′(~x) such that

for all A and ~a, T ,A |= q(~a) iff A |= q′(~a)

FO-rewritability: only possible in DL with query answering in FO (=AC0)
for data complexity:

OWL 2 QL

SIGMOD 2015, Moscow, 28.05.15 26

W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R ::= Pi | P−i

basic concepts B ::= ⊥ | Ai | ∃R

concepts C ::= B | ∃R.B
(∃R is an abbreviation for ∃R.>)

a TBox T is a finite set of axioms of the form

B v C, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ak(ai) and Pk(ai, aj)

(plus inequality constraints ai 6= aj for i 6= j)

SIGMOD 2015, Moscow, 28.05.15 27

W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R ::= Pi | P−i

basic concepts B ::= ⊥ | Ai | ∃R

concepts C ::= B | ∃R.B
(∃R is an abbreviation for ∃R.>)

a TBox T is a finite set of axioms of the form

B v C, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ak(ai) and Pk(ai, aj)

(plus inequality constraints ai 6= aj for i 6= j)

NB. axioms B′ v ∃R.B are ‘syntactic sugar’

SIGMOD 2015, Moscow, 28.05.15 27

W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R ::= Pi | P−i

basic concepts B ::= ⊥ | Ai | ∃R

concepts C ::= B | ∃R.B
(∃R is an abbreviation for ∃R.>)

a TBox T is a finite set of axioms of the form

B v C, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ak(ai) and Pk(ai, aj)

(plus inequality constraints ai 6= aj for i 6= j)

NB. axioms B′ v ∃R.B are ‘syntactic sugar’ B′ v ∃RR.B , ∃R−B v B, RB v R

SIGMOD 2015, Moscow, 28.05.15 27

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

1

t
23

4567

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

1

t
23

4567

1

t
23

4567

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

CQ: q ← ReachableFromTarget(s)

(T ,AG,t) |= q iff there is a path from s to t in G

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

1

t
23

4567

CQ: q ← ReachableFromTarget(s)

(T ,AG,t) |= q iff there is a path from s to t in G

T and q do not depend on G, s, t

‘(T ,AG,t) |= q?’ is NLogSpace-hard for data complexity

q and T are not FO-rewritable
SIGMOD 2015, Moscow, 28.05.15 28

Can We Use A v B t C in QL?

graph 3-colouring problem is NP-complete:

‘given a graph G = (V,E), decide whether its vertices can be painted

in one of three colours so that no adjacent vertices have the same colour’

represent G as the ABox AG = {R(v1, v2) | {v1, v2} ∈ E }

3-colouring is encoded by the TBox T with the axioms

> v C1 t C2 t C3, Ci u Cj v ⊥, Ci u ∃R.Ci v B, 1 ≤ i ≤ 3

SIGMOD 2015, Moscow, 28.05.15 29

Can We Use A v B t C in QL?

graph 3-colouring problem is NP-complete:

‘given a graph G = (V,E), decide whether its vertices can be painted

in one of three colours so that no adjacent vertices have the same colour’

represent G as the ABox AG = {R(v1, v2) | {v1, v2} ∈ E }

3-colouring is encoded by the TBox T with the axioms

> v C1 t C2 t C3, Ci u Cj v ⊥, Ci u ∃R.Ci v B, 1 ≤ i ≤ 3

consider CQ q ← B(y)

(T ,AG) 6|= q iff G is 3-colourable

T and q do not depend on G

‘(T ,AG) |= q?’ is coNP-hard for data complexity

q and T are not FO-rewritable

SIGMOD 2015, Moscow, 28.05.15 29

OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
.

SIGMOD 2015, Moscow, 28.05.15 30

OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
.

TGDs: ∀~x∀~y
(
ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

)
ϕ and ψ are conjunctions of predicate atoms

SIGMOD 2015, Moscow, 28.05.15 30

OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
.

TGDs: ∀~x∀~y
(
ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

)
ϕ and ψ are conjunctions of predicate atoms

linear TGDs: ϕ and ψ are atoms (all OWL 2 QL axioms are linear)

Cal̀ı, Gottlob & Pieris, 2010: sets of sticky TGDs are FO-rewritable
in particular, linear TGDs

SIGMOD 2015, Moscow, 28.05.15 30

OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
.

TGDs: ∀~x∀~y
(
ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

)
ϕ and ψ are conjunctions of predicate atoms

linear TGDs: ϕ and ψ are atoms (all OWL 2 QL axioms are linear)

Cal̀ı, Gottlob & Pieris, 2010: sets of sticky TGDs are FO-rewritable
in particular, linear TGDs

NB: these TGDs are used with the open world assumption (for enriching data)

TGDs in DBs are used with the closed world assumption (integrity constraints)

SIGMOD 2015, Moscow, 28.05.15 30

Practical Query Answering in OWL 2 QL

systems
– QuOnto (Rome, 2005)
– REQUIEM (Oxford, 2009) / Stardog (Washington, DC, 2011)
– Presto (Rome, 2010)
– IQAROS (Athens, 2011)
– Rapid (Athens-Oxford, 2011)
– Nyaya (Milan-Oxford, 2010) for TGDs
– Clipper (Vienna, 2012) for Horn-SHIQ
– kyrie (Madrid, 2013)
– Pure (Montpellier, 2013) for TGDs
– Quest/ontop (Bolzano, 2011)

SIGMOD 2015, Moscow, 28.05.15 31

Practical Query Answering in OWL 2 QL

systems
– QuOnto (Rome, 2005)
– REQUIEM (Oxford, 2009) / Stardog (Washington, DC, 2011)
– Presto (Rome, 2010)
– IQAROS (Athens, 2011)
– Rapid (Athens-Oxford, 2011)
– Nyaya (Milan-Oxford, 2010) for TGDs
– Clipper (Vienna, 2012) for Horn-SHIQ
– kyrie (Madrid, 2013)
– Pure (Montpellier, 2013) for TGDs
– Quest/ontop (Bolzano, 2011)

not so smoothly: the size of implemented rewritings q′ is O
(
(|q| · |T |)|q|

)
(can’t say ‘query is small or fixed’ any longer)

SIGMOD 2015, Moscow, 28.05.15 31

Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

SIGMOD 2015, Moscow, 28.05.15 32

Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

SIGMOD 2015, Moscow, 28.05.15 32

Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

PE-rewritings (positive existential queries ≈ select-project-join-union) ∃ ∨ ∧
grandparent(x, z)← (parent(x, y) ∨ father(x, y) ∨mother(x, y)) ∧

(parent(y, z) ∨ father(y, z) ∨mother(y, z))

SIGMOD 2015, Moscow, 28.05.15 32

Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

PE-rewritings (positive existential queries ≈ select-project-join-union) ∃ ∨ ∧
grandparent(x, z)← (parent(x, y) ∨ father(x, y) ∨mother(x, y)) ∧

(parent(y, z) ∨ father(y, z) ∨mother(y, z))

NDL-rewriting (non-recursive Datalog ≈ SQL with views) ∃ ∨ ∧ + structure sharing

grandparent(x, z)← ext-parent(x, y) ∧ ext-parent(y, z)
ext-parent(x, y)← parent(x, y)
ext-parent(x, y)← father(x, y)
ext-parent(x, y)← mother(x, y)

SIGMOD 2015, Moscow, 28.05.15 32

Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

PE-rewritings (positive existential queries ≈ select-project-join-union) ∃ ∨ ∧
grandparent(x, z)← (parent(x, y) ∨ father(x, y) ∨mother(x, y)) ∧

(parent(y, z) ∨ father(y, z) ∨mother(y, z))

NDL-rewriting (non-recursive Datalog ≈ SQL with views) ∃ ∨ ∧ + structure sharing

grandparent(x, z)← ext-parent(x, y) ∧ ext-parent(y, z)
ext-parent(x, y)← parent(x, y)
ext-parent(x, y)← father(x, y)
ext-parent(x, y)← mother(x, y)

FO-rewriting (first-order queries ≈ SQL) ∃ ∀ ∨ ∧ ¬

SIGMOD 2015, Moscow, 28.05.15 32

Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B′ v ∃R.B

≈ RDF Schema

SIGMOD 2015, Moscow, 28.05.15 33

Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B′ v ∃R.B

≈ RDF Schema

q(~x) and a flat T qext(~x) by replacing

A(u)
∨

T |=A′vA

A′(u) ∨
∨

T |=∃RvA

∃v R(u, v)

P (u, v)
∨

T |=RvP

R(u, v)

for any CQ q(~x) and any flat OWL 2 QL TBox T ,

qext(~x) is a PE-rewriting of q and T of size O(|q| · |T |)

SIGMOD 2015, Moscow, 28.05.15 33

Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B′ v ∃R.B

≈ RDF Schema

q(~x) and a flat T qext(~x) by replacing

A(u)
∨

T |=A′vA

A′(u) ∨
∨

T |=∃RvA

∃v R(u, v)

P (u, v)
∨

T |=RvP

R(u, v)

for any CQ q(~x) and any flat OWL 2 QL TBox T ,

qext(~x) is a PE-rewriting of q and T of size O(|q| · |T |)

easy in theory, not so in practice

SIGMOD 2015, Moscow, 28.05.15 33

Who Works with Professors?

TBox:

worksOn− v involves

isManagedBy v involves

in English: find those who work with professors

query: q(x) ← worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)

SIGMOD 2015, Moscow, 28.05.15 34

Who Works with Professors?

TBox:

worksOn− v involves

isManagedBy v involves

in English: find those who work with professors

query: q(x) ← worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)

worksOn(z, y) ∨ isManagedBy(y, z) ∨ involves(y, z)

SIGMOD 2015, Moscow, 28.05.15 34

Rewriting over H-complete ABoxes

an ABox A is H-complete with respect to T if

• A(a) ∈ A whenever A′(a) ∈ A and T |= A′ v A

• A(a) ∈ A whenever R(a, b) ∈ A and T |= ∃R v A

• P (a, b) ∈ A whenever R(a, b) ∈ A and T |= R v P

SIGMOD 2015, Moscow, 28.05.15 35

Rewriting over H-complete ABoxes

an ABox A is H-complete with respect to T if

• A(a) ∈ A whenever A′(a) ∈ A and T |= A′ v A

• A(a) ∈ A whenever R(a, b) ∈ A and T |= ∃R v A

• P (a, b) ∈ A whenever R(a, b) ∈ A and T |= R v P

an FO-query q′(~x) is an FO-rewriting of q(~x) and T over H-complete ABoxes if,

for any H-complete (w.r.t. T) ABox A and any ~a,

(T ,A) |= q(~a) iff A |= q′(~a)

(thus we ignore the axioms considered in the flat rewriting)

SIGMOD 2015, Moscow, 28.05.15 35

Case 2: Who Works with Professors (2)?

T :
RA v ∃worksOn.Project worksOn− v involves

Project v ∃isManagedBy.Prof isManagedBy v involves

A: RA(chris), worksOn(chris, dyn), Project(dyn), Lecturer(dave),

worksOn(dave, dyn)

A
RA

chris

Project chrisw1

w
o

rk
sO

n

in
vo

lv
e

s−
Prof

chrisw1w2
in

vo
lv

e
s

isM
a

n
a

g
e

d
By

Project

dyn

Prof
dynw2

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

involves−

worksOn

Lecturer

dave
involves−

worksOn

w1 = w∃worksOn.Project
w2 = w∃isManagedBy.Prof

SIGMOD 2015, Moscow, 28.05.15 36

Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

SIGMOD 2015, Moscow, 28.05.15 37

Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

SIGMOD 2015, Moscow, 28.05.15 37

Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

RA(x) ∧ Professor(z) ∧ (x = z)

RA
Professor

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h3

h3

h
3

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

(x and z are the roots of the tree witness)

SIGMOD 2015, Moscow, 28.05.15 37

Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

RA(x) ∧ Professor(z) ∧ (x = z)

RA
Professor

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h3

h3

h
3

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

(x and z are the roots of the tree witness)
PE-rewriting (over H-complete ABoxes):
q′(x) ← RA(x) ∨

(
worksOn(x, y) ∧ Project(y)

)
∨(

RA(x) ∧ Professor(z) ∧ (x = z)
)
∨(

worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)
)

SIGMOD 2015, Moscow, 28.05.15 37

Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, x)

T

∃z R(x, z)

P

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, x)

T

∃z R(x, z)

PA(x) ∧ (x = x′)

B(y′′) ∧ (y′ = y′′)

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

A

R

T

B

R
−

P

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, x)

T

∃z R(x, z)

PA(x) ∧ (x = x′)

B(y′′) ∧ (y′ = y′′)

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

A

R

T

B

R
−

P

qtw(~x) =
∨

Θ independent set
of tree witnesses

∃~y
(∧
S(~z)∈q\qΘ

S(~z) ∧
∧
t∈Θ

twt

)
(Kikot, K & Zakharyaschev, 2012)

SIGMOD 2015, Moscow, 28.05.15 38

Rewritings as Boolean Functions

hypergraphH :
vertices = atoms of the query
hyperedges = tree witnesses

R(x, y)

T (y, z) T (y′, z)

R(x′, y′)

S(x′, z′)S(x′′, z′)

R(x′′, y′′)

SIGMOD 2015, Moscow, 28.05.15 39

Rewritings as Boolean Functions

hypergraphH :
vertices = atoms of the query
hyperedges = tree witnesses

R(x, y)

T (y, z) T (y′, z)

R(x′, y′)

S(x′, z′)S(x′′, z′)

R(x′′, y′′)

hypergraph function of H = (V,E):

fH =
∨
X⊆E

X independent

(∧
v∈V \VX

pv ∧
∧
e∈X

pe

)

SIGMOD 2015, Moscow, 28.05.15 39

Rewritings as Boolean Functions

hypergraphH :
vertices = atoms of the query
hyperedges = tree witnesses

R(x, y)

T (y, z) T (y′, z)

R(x′, y′)

S(x′, z′)S(x′′, z′)

R(x′′, y′′)

hypergraph function of H = (V,E):

fH =
∨
X⊆E

X independent

(∧
v∈V \VX

pv ∧
∧
e∈X

pe

)

(Kikot, K, Podolskii & Zakharyaschev, 2012) lower bounds from
circuit complexity

exponential non-recursive datalog (and positive existential) rewritings
superpolynomial first-order rewritings (unless NP ⊆ P/poly)

SIGMOD 2015, Moscow, 28.05.15 39

Short Rewritings in Theory

if qt1 ∩ qt2 = ∅ or qt1 ⊆ qt2 or qt2 ⊆ qt1 , for each pair t1 and t2︸ ︷︷ ︸
compatible

, then

q′tw(~x) =
∧

S(~z)∈q

(
S(~z) ∨

∨
t : S(~z)∈qt

twt

)
is a rewriting (over H-complete ABoxes)

SIGMOD 2015, Moscow, 28.05.15 40

Short Rewritings in Theory

if qt1 ∩ qt2 = ∅ or qt1 ⊆ qt2 or qt2 ⊆ qt1 , for each pair t1 and t2︸ ︷︷ ︸
compatible

, then

q′tw(~x) =
∧

S(~z)∈q

(
S(~z) ∨

∨
t : S(~z)∈qt

twt

)
is a rewriting (over H-complete ABoxes)

QL: replace S(~z) with
∨

T |=S′vS

S′(~z)

=⇒ polynomial positive existential rewriting
provided that the number of tree witnesses is polynomial and they are compatible

not the case in general!

SIGMOD 2015, Moscow, 28.05.15 40

Part 4

Practical OBDA with Ontop

SIGMOD 2015, Moscow, 28.05.15 41

OBDA system Ontop

http://ontop.inf.unibz.it

– implemented at the Free University of Bozen-Bolzano
(Mariano Rodŕıguez-Muro, Martin Rezk, Guohui Xiao)

– open-source

– available as a plugin for Protégé 4 & 5, SPARQL end-point,
OWL API and Sesame libraries

SIGMOD 2015, Moscow, 28.05.15 42

http://ontop.inf.unibz.it

OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

SIGMOD 2015, Moscow, 28.05.15 43

OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Why SQL rewritings are large:

(1) a large number of tree witnesses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) multiple definitions of the ontology terms in R2RML mappingsM

SIGMOD 2015, Moscow, 28.05.15 43

OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Why SQL rewritings are large:

(1) a large number of tree witnesses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) multiple definitions of the ontology terms in R2RML mappingsM

very few for real-world CQs/ontologies

SIGMOD 2015, Moscow, 28.05.15 43

OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Why SQL rewritings are large:

(1) a large number of tree witnesses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) multiple definitions of the ontology terms in R2RML mappingsM

very few for real-world CQs/ontologies

many inclusions in T follow from Σ andM

SIGMOD 2015, Moscow, 28.05.15 43

Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

– database title
movie ID title production year

728 ‘Django Unchained’ 2012
.

castinfo
person ID movie ID person role

n37 728 1
n38 728 1
.

– dependencies

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(FK)

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

SIGMOD 2015, Moscow, 28.05.15 44

http://www.imdb.com/interfaces

Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

– database title
movie ID title production year

728 ‘Django Unchained’ 2012
.

castinfo
person ID movie ID person role

n37 728 1
n38 728 1
.

– dependencies

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(FK)

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

Movie Ontology MO http://www.movieontology.org

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person, . . .

SIGMOD 2015, Moscow, 28.05.15 44

http://www.imdb.com/interfaces
http://www.movieontology.org

Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

– database title
movie ID title production year

728 ‘Django Unchained’ 2012
.

castinfo
person ID movie ID person role

n37 728 1
n38 728 1
.

– dependencies

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(FK)

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

Movie Ontology MO http://www.movieontology.org

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person, . . .

Mappings (created by the Ontop development team)

mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)

SIGMOD 2015, Moscow, 28.05.15 44

http://www.imdb.com/interfaces
http://www.movieontology.org

Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

M
mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

M
mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)

MT mo:Movie(m)← title(m, t, y) by (M1)
mo:Movie(m)← castinfo(p,m, r) by (M2) + ∃mo:cast v mo:Movie

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

M
mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)

MT mo:Movie(m)← title(m, t, y) by (M1)
mo:Movie(m)← castinfo(p,m, r) by (M2) + ∃mo:cast v mo:Movie

redundant by (FK)
∀m

(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
SIGMOD 2015, Moscow, 28.05.15 45

Optimising T-mappings

• using foreign keys (inclusion dependencies)

SIGMOD 2015, Moscow, 28.05.15 46

Optimising T-mappings

• using foreign keys (inclusion dependencies)

• using disjunction

T
mo:Actor v mo:Artist, mo:Artist v mo:Person,
mo:Director v mo:Person, mo:Editor v mo:Person, . . .

M
mo:Actor(p)← castinfo(p,m, r), (r = 1) (M1)
. . .
mo:Editor(p)← castinfo(p,m, r), (r = 6) (M6)

SIGMOD 2015, Moscow, 28.05.15 46

Optimising T-mappings

• using foreign keys (inclusion dependencies)

• using disjunction

T
mo:Actor v mo:Artist, mo:Artist v mo:Person,
mo:Director v mo:Person, mo:Editor v mo:Person, . . .

M
mo:Actor(p)← castinfo(p,m, r), (r = 1) (M1)
. . .
mo:Editor(p)← castinfo(p,m, r), (r = 6) (M6)

MT mo:Person(p)← castinfo(p,m, r), ((r = 1) ∨ · · · ∨ (r = 6))

SIGMOD 2015, Moscow, 28.05.15 46

Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15 47

Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15 47

Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

M
mo:Movie(m)← title(m, t, y) (M1)
mo:title(m, t)← title(m, t, y) (M2)
mo:year(m, y)← title(m, t, y) (M3)

SIGMOD 2015, Moscow, 28.05.15 47

Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

M
mo:Movie(m)← title(m, t, y) (M1)
mo:title(m, t)← title(m, t, y) (M2)
mo:year(m, y)← title(m, t, y) (M3)

Unfolding

q∗(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15 47

Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

M
mo:Movie(m)← title(m, t, y) (M1)
mo:title(m, t)← title(m, t, y) (M2)
mo:year(m, y)← title(m, t, y) (M3)

Unfolding

q∗(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010)

primary
keys

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

Semantic Query Optimisation

q†(t, y)← title(m, t, y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15 47

Practical OBDA with Ontop

CQ q

ontology T

UCQ qtw

T -mappingmappingM

dependencies Σ

SQL

data D

virtual ABox

H-complete ABox A

+

tw-rewriting Ê

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

H-completion

+

composition Ë

SQO
Ì

SQ
O

Í

Ê tree-witness rewriting qtw over H-complete ABoxes (no concept/role hierarchies)

Ë T -mapping = system mappingM+ T makes virtual ABoxes H-complete

Ì T -mapping is simplified using SQO and SQL features

constructed and optimised for T and Σ only once

Í unfolding uses SQO to produce small and efficient SQL queries

SIGMOD 2015, Moscow, 28.05.15 48

References (1)

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini and R. Rosati. Linking
Data to Ontologies. J. Data Semantics 10: 133–173 (2008)
A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev: The DL-Lite Family and
Relations. J. Artif. Intell. Res. (JAIR) 36:1–69 (2009)
A. Cal̀ı, G. Gottlob and A. Pieris. Query Rewriting under Non-Guarded Rules. In Proc.
AMW 2010
M. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In Proc.
STOC 1982: 137–146
D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies.
ACM Trans. Database Syst., 4(4):455–469, 1979
D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984
A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited. Proc. PODS 2008: 149–158
M. Rodriguez-Muro and D. Calvanese. Semantic Index: Scalable Query Answering
without Forward Chaining or Exponential Rewritings Posters of ISWC 2011
M. Rodriguez-Muro and D. Calvanese. Dependencies: Making Ontology Based Data
Access Work. Proc. AMW 2011
G. Gottlob and T. Schwentick. Rewriting Ontological Queries into Small Nonrecursive
Datalog Programs. Proc. KR 2012

SIGMOD 2015, Moscow, 28.05.15 49

References (2)

S. Kikot, R. Kontchakov, V. Podolskii and M. Zakharyaschev: Exponential Lower Bounds
and Separation for Query Rewriting. Proc. ICALP (2) 2012: 263–274
F. Baader, S. Brandt and C. Lutz. Pushing the EL envelope. Proc. IJCAI 2005
B. N. Grosof, I. Horrocks, R. Volz and S. Decker. Description logic programs: Combining
logic programs with description logic. Proc. WWW 2003
A. Cal̀ı, G. Gottlob and A. Pieris. Advanced Processing for Ontological Queries. PVLDB
3(1): 554–565 (2010)
D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and R. Rosati. DL-Lite: Tractable
Description Logics for Ontologies. Proc. AAAI 2005: 602–607
A. Chortaras, D. Trivela and G. Stamou. Optimized query rewriting for OWL 2 QL. Proc.
CADE 2011
T. Eiter, Ortiz, M. Šimkus, T.-K. Tran and G. Xiao. Query rewriting for Horn-SHIQ plus rules.
Proc. AAAI 2012
M. König, M. Leclère, M.-L. Mugnier and M. Thomazo: A sound and complete backward
chaining algorithm for existential rules. Proc. RR 2012
M. Rodŕıguez-Muro, R. Kontchakov and M. Zakharyaschev. Ontology-Based Data Ac-
cess: Ontop of Databases. Proc. ISWC 2013
R. Kontchakov, M. Rezk, M. Rodŕıguez-Muro, G. Xiao and M. Zakharyaschev. Answering
SPARQL Queries under the OWL 2 QL Entailment Regime with Databases. Proc. ISWC
2014
SIGMOD 2015, Moscow, 28.05.15 50

