Ontology-Based Data Access

Roman Konichakov

Dept. of Computer Science and Inf. Systems, Birkbeck, University of London

http://www.dcs.bbk.ac.uk/~roman

acknowledgements:
Alessandro Artale, Diego Calvanese, Carsten Lutz, Mariano Rodriguez-Muro,
David Toman, Frank Wolter and Michael Zakharyaschev

http://www.dcs.bbk.ac.uk/~roman

Data Management: New Challenges

e Statoil (Norway)
many databases, e.qg., EPDS (Exploration and Production Data Store
over 1500 tables
historical exploration data (e.g., layers of rocks, porosity),
production logs, maps, etc.
business information such as license areas and companies

direct data access by engineers (and geologists in particular) is often challenging

Data Management: New Challenges

e Statoil (Norway)

many databases, e.qg., EPDS (Exploration and Production Data Store
over 1500 tables
historical exploration data (e.g., layers of rocks, porosity),
production logs, maps, etc.
business information such as license areas and companies

direct data access by engineers (and geologists in particular) is often challenging

o Siemens Energy Germany)
power generation facilities (gas and steam furbines)
50 service centres linked to a common database

each tfurbine
2000 sensors
150 tables

30 GB of data is generated daily (hundreds of terabytes in total)

Ontology-Based Data Access

Aim: to achieve logical tfransparency in accessing data
- hide from the user where and how data is stored

— present only a conceptual view of the data
— query the data sources through the conceptual model using RDBMSs

(

N

ontology
TBox

mMmappings

data sources
ABox

ro(Director, Bio) r1 (Title, Year, Director)

since 1960, european directors since 1990
SIGMOD 2015, Moscow, 28.05.15

Issues in OBDA

e whatis the right onfology language?

e thereis a wide spectrum of languages that differ in
expressive power and complexity of inference
e scalability to very large amounts of data is key

SIGMOD 2015, Moscow, 28.05.15 4

Issues in OBDA

e whatis the right onfology language?

e thereis a wide spectrum of languages that differ in
expressive power and complexity of inference
e scalability to very large amounts of data is key

e whatis the query language”?

SIGMOD 2015, Moscow, 28.05.15 4

Issues in OBDA

what is the right ontology language?

e thereis a wide spectrum of languages that differ in
expressive power and complexity of inference
e scalability to very large amounts of data is key

what is the query language”?

how do we connect ontologies to data sources?

e multiple data sources and ontologies

Issues in OBDA

what is the right ontology language?

e thereis a wide spectrum of languages that differ in
expressive power and complexity of inference
e scalability to very large amounts of data is key

what is the query language”?

how do we connect ontologies to data sources?

e multiple data sources and ontologies

available tools?

e sound and complete reasoning
e practical scalability

Part 1

Databases and Logic

SIGMOD 2015, Moscow, 28.05.15

Databases: Specifying Schema

Director

EuropeanDirector

an Entity-Relationship diagram

Movie

Databases: Specifying Schema

an Entity-Relationship diagram

Director Movie
Py
\ (yeer)

EuropeanDirector

integrity constraints or dependencies (in the language of FO):

Vd (Im directed(d, m) — 3In Director(d, n)) (foreign keys, inclusion or
Vm (3d directed(d, m) — Ity Movie(m, t,y)) tuple-generating dependencies,
Vdn (EuropeanDirector(d, n) — Director(d, n)) TGDs)

Databases: Specifying Schema

an Entity-Relationship diagram

Director Movie
pY
\ =D

EuropeanDirector

integrity constraints or dependencies (in the language of FO):

Vd (Im directed(d, m) — 3In Director(d, n)) (foreign keys, inclusion or
Vm (3d directed(d, m) — Ity Movie(m, t,y)) tuple-generating dependencies,
Vdn (EuropeanDirector(d, n) — Director(d, n)) TGDs)

Vdnins (Director(d, ny) A Director(d, nz) — (n1 = n2)) (keys, functional
thltzylyz (MOVie(m, tq, yl) AN MOVie(m, to, yz) — (tl = tz)) or
equality-generating dependencies, EGDs)
6

Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large

what is specified is true, everything else is false

SIGMOD 2015, Moscow, 28.05.15

Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large

what is specified is frue, everything else is false

data:
Director = { (0, "peter”), (1, "quentin”), (2,"danny”) }
EuropeanDirector = { (0, “peter”), (2,"danny”) }
Movie = { (10, “DC"), (11,"TS") }
directed = { (0,10), (2,11) }

query: g(n) = 3d Director(d, n)

SIGMOD 2015, Moscow, 28.05.15

Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large

what is specified is frue, everything else is false

data:
Director = { (0, "peter”), (1, "quentin”), (2,"danny”) }
EuropeanDirector = { (0, “peter”), (2,"danny”) }
Movie = { (10, “DC"), (11,"TS") }
directed = { (0,10), (2,11) }

query: g(n) = 3d Director(d, n)
answer: { “peter”, “quentin”, “danny” }

not having (2, “danny”) in Director would violate the integrity constraint
Vdn (EuropeanDirector(d, n) — Director(d, n))

SIGMOD 2015, Moscow, 28.05.15 7

Databases: Query Languages

SAL ~ domain-independent FO queries:

database predicates + logical connectives v, A, = + quantifiersV, 3

SIGMOD 2015, Moscow, 28.05.15

Databases: Query Languages

SAL ~ domain-independent FO queries:

database predicates + logical connectives v, A, = + quantifiers vV, 3

data D = FO interpretation Zp (CWA) a is an answer to q(Z£) iff Zp = q(a)

SIGMOD 2015, Moscow, 28.05.15

Databases: Query Languages

SAL ~ domain-independent FO queries:

database predicates + logical connectives v, A, = + quantifiers vV, 3

data D = FO interpretation Zp (CWA) @ is an answer 1o q(&€) iff Zp = q(ad)

Select-Project-Join (SPJ) = conjunctive queries (CQ)S5):

database predicates + A + 3
database engines are optimised for CQs

Example: SELECT M.title, D.name
FROM Movie M, Directed MD, Director D
WHERE M.id = MD.movield AND MD.directorld = D.id AND M.Year = 1982

SIGMOD 2015, Moscow, 28.05.15 8

Databases: Query Languages

SAL ~ domain-independent FO queries:

database predicates + logical connectives v, A, = + quantifiers vV, 3

data D = FO interpretation Zp (CWA) a is an answer to q(Z£) iff Zp = q(a)

Select-Project-Join (SPJ) = conjunctive queries (CQ)S5):
database predicates + A + 3

database engines are optimised for CQs

Example: SELECT M.title, D.name
FROM Movie M, Directed MD, Director D
WHERE M.id = MD.movield AND MD.directorld = D.id AND M.Year = 1982

Datalog notation: | g(&) < Pi(Z1),. .., Px(Zk)
A A 2 2
head body

where each Zj is a vector, which may contain answer variables ¥ and
existentially quantified variables i (implicit)

Example: q(t,n) « Movie(m,t,1982), directed(m, d), director(d, n)

SIGMOD 2015, Moscow, 28.05.15 8

Why do Databases Work?

query answering problem (as a recognition problem):

given a finite data D, a query q(£) and a tuple a,
decide whether Zp = ¢g(a)

Zp makes the facts in D true (and only them)

what is the complexity of CQ answering?

SIGMOD 2015, Moscow, 28.05.15 9

Why do Databases Work?

query answering problem (as a recognition problem):

given a finite data D, a query q(£) and a tuple a,
decide whether Zp = ¢g(a)

Zp makes the facts in D true (and only them)

what is the complexity of CQ answering?

naive algorithm:

guess values for all existential variables and then
evaluate the query in polynomial time in NP

SIGMOD 2015, Moscow, 28.05.15 9

Why Do Databases Work? (2)

NO, by reduction of the graph 3-colourability problem, which is NP-complete:

‘given an undirected graph G = (V, E),
decide whether it possible to colour it (using r. g. b)
so that no edge has the same colour at both ends?’

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

NO, by reduction of the graph 3-colourability problem, which is NP-complete:

‘given an undirected graph G = (V, E),
decide whether it possible to colour it (using r. g. b)
so that no edge has the same colour at both ends?’

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

NO, by reduction of the graph 3-colourability problem, which is NP-complete:

‘given an undirected graph G = (V, E),
decide whether it possible to colour it (using r. g. b)
so that no edge has the same colour at both ends?’

SIGMOD 2015, Moscow, 28.05.15 10

Why Do Databases Work? (2)

NO, by reduction of the graph 3-colourability problem, which is NP-complete:

‘given an undirected graph G = (V, E),
decide whether it possible to colour it (using r. g. b)
so that no edge has the same colour at both ends?’

D = {A(r,g),A(g,b),A(b,r), A(g,r), A(r,b), A(b, g)} !
qe = 3Jvi,...,v, /\ A(vi,vj) A A
(visv)EE b r

D = q¢ iff G is 3-colourable

10

Why Do Databases Work? (2)

NO, by reduction of the graph 3-colourability problem, which is NP-complete:

‘given an undirected graph G = (V, E),
decide whether it possible to colour it (using r. g. b)
so that no edge has the same colour at both ends?’

D = {A(r,g),A(g,b),A(b,r), A(g,r), A(r,b), A(b, g)} !
qe = 3Jvi,...,v, /\ A(vi,vj) A A
(visv)EE b r

D = q¢ iff G is 3-colourable

in fact, the query answering algorithm runs in O (| D|!4))
data complexity: only data D are counted as input (q is constant)

(Vardi, 1982): query answering is in AC° for data complexity
10

Circuits and ACY

a circuit is an acyclic graph of AND-, OR- and NOT-gates

(with n inputs and a single output, sink)
ERa=ID
D1
D2

11

Circuits and ACY

a circuit is an acyclic graph of AND-, OR- and NOT-gates

(with n inputs and a single output, sink)
ERa=ID
D1
D2

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: A, V and = are AND-, OR- and NOT-gates, respectively

11

Circuits and ACY

a circuit is an acyclic graph of AND-, OR- and NOT-gates

(with n inputs and a single output, sink)
ERa=ID
D1
D2

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: A, V and = are AND-, OR- and NOT-gates, respectively
Vv and 3 are AND- and OR-gates with unbounded fan-in

11

Circuits and ACY

a circuit is an acyclic graph of AND-, OR- and NOT-gates

(with n inputs and a single output, sink)
ERa=ID
D1
D2

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: A, V and = are AND-, OR- and NOT-gates, respectively
Vv and 3 are AND- and OR-gates with unbounded fan-in

AC? = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

11

Circuits and ACY

a circuit is an acyclic graph of AND-, OR- and NOT-gates

(with n inputs and a single output, sink)
ERa=ID
D1
D2

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: A, V and = are AND-, OR- and NOT-gates, respectively
Vv and 3 are AND- and OR-gates with unbounded fan-in

AC? = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

the depth of this circuit does not depend onN D s \/ardi’s theorem

11

Circuits and ACY

a circuit is an acyclic graph of AND-, OR- and NOT-gates

(with n inputs and a single output, sink)
ERa=ID
D1
D2

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: A, V and = are AND-, OR- and NOT-gates, respectively
Vv and 3 are AND- and OR-gates with unbounded fan-in

AC? = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

the depth of this circuit does not depend onN D s \/ardi’s theorem

ACC is a proper subclass of LoGSPACE C P (PARITY does not belong to ACP)

| given a word w, decide whether its length is even |

11

Part 2

Basics of Ontology Languages

SIGMOD 2015, Moscow, 28.05.15

12

DLs and OWL: Syntax

concepts (classes, sets of elements)

C = A; | T | 1 |
Concepf name 0W|Th|ng 0W|:N0thing
~C | C,MC, | C, U C, |
) ~~~ ——— ——
ObjectComplementOf(C) ObjectintersectionOf(C1,C2) ObjectUnionOf(C1,C2)
JR.C VR.C
—_— | ~——
ObjectSomeValuesFrom(R,C) ObjectAllValuesFrom(R,C)

SIGMOD 2015, Moscow, 28.05.15 13

DLs and OWL: Syntax

concepts (classes, sets of elements)

C = A; | T | 1 |
Concepf name 0W|Th|ng 0W|:N0thing
-C | C,MNC, | C; U Cy |
) ~~~ ——— ——
ObjectComplementOf(C) ObjectintersectionOf(C1,C2) ObjectUnionOf(C1,C2)
3R.C | VR.C
— N——
ObjectSomeValuesFrom(R,C) ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)
R := P, | P
~—~—

role name

SIGMOD 2015, Moscow, 28.05.15 13

DLs and OWL: Syntax

concepts (classes, sets of elements)

C = A; | T | 1 |
Concepf name 0W|Th|ng 0W|:N0thing
-C | Cl M Cz
ObjectComplementOf(C) ObjectintersectionOf(C1,C2)
3R.C | VR.C
—— ~——

ObjectSomeValuesFrom(R,C)

| C, UC,
—

ObjectUnionOf(C1,C2)

ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R := P, | P~
~—~—
role name
TBox 7~ C: C C,
N——

ABox A

SubClassOf(C1,C2)

and

C(a) and R(a,b)

SIGMOD 2015, Moscow, 28.05.15

R, L R,
—

SubObjectPropertyOf(R1,Rz2)

13

DLs and OWL: Syntax

concepts (classes, sets of elements)

C = A; | T
~—~ ~~

concept name owl:Thing

-C |

~—~
ObjectComplementOf(C)

JR.C

JBC |

ObjectSomeValuesFrom(R,C)

ObjectintersectionOf(C1,C2)

L
~~~
owl:Nothing
C;nNCy | C;uC, |
S—— ——

ObjectUnionOf(C1,C2)

VR.C

ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= P, | P~
~~~
role name
TBox 7 C,C C,
N——
SubClassOf(C1,C2)
ABox A C(a) and

and Rl E R2
—
SubObjectPropertyOf(R1,Rz2)
R(a,b)

knowledge base K = (T, .A) (ontology)

SIGMOD 2015, Moscow, 28.05.15

13

interpretation Z = (

T
° (interpretation function)
individuals a;

concept names A;

role names P;

DL Semantics

T T
\A,./ s ")
domain

AI

GraduateCourse

— elementsaf € AT
— subsets AT C A%
— binary relations P* C AT x AT

14

DL Semantics (2)

(P7)* = {(v,u) | (u,v) € P*}

SIGMOD 2015, Moscow, 28.05.15

takesCourse

takesCourse ™

15

DL Semantics (2)

(P7)* = {(v,u) | (u,v) € P*}

T = AT and 1T =0

SIGMOD 2015, Moscow, 28.05.15

takesCourse

takesCourse ™

15

DL Semantics (2)

takesCourse

(P7)* = {(v,u) | (u,v) € P*}

takesCourse ™

T = AT and 1T =0

Ow

SIGMOD 2015, Moscow, 28.05.15

15

DL Semantics (2)

takesCourse

(P7)* = {(v,u) | (u,v) € P*}

takesCourse ™

T = AT and 1T =0

(~O)F = AT\ C?

e
Ow
O~

os

o>
N

(OX~,

(Cl (] C2)I - Cf: U C2I

SIGMOD 2015, Moscow, 28.05.15 15

DL Semantics (3)

(3R.C)T = {u| thereisv € C* such that (u,v) € RT }

StakesCourse.UndergraduateCourse

ItakesCourse.GraduateCourse
[_] Student

kate
RS/
N\ c_S’C c,}JO

GraduateCourse | [UndergraduateCourse

OrC or Iy (R(z,y) A C(y))

16

DL Semantics (3)

(3R.C)T = {u| thereisv € C* such that (u,v) € RT }

StakesCourse.UndergraduateCourse

ItakesCourse.GraduateCourse
[] Student

Joh) /J kate
c\"‘.) O‘ﬁ_\ \"OQ
o)

I gy X\L/
SW o/ \o

GraduateCourse UndergroduoTeCourse

OrC or Iy (R(z,y) A C(y))

(VR.C)T = {u|v e C%, forallv with (u,v) € R } VR.C = -3R.-C

16

DL Semantics (3)

(3R.C)T = {u| thereisv € C* such that (u,v) € RT }

ItakesCourse.UndergraduateCourse

Student

kate
(._JQ)
. /

GraduateCourse | |UndergraduateCourse

[ItakesCourse.GraduateCourse j

OrC or Jy(R(z,y) AC(y))

(VR.C)T = {u]|v e C7, forallv with (u,v) € RT } VR.C = -3R.-C

“for all” is frue when there are no v with (u,v) € Rt
e.g., spl e (VtakesCourse.UndergraduateCourse)*

T
spl € (VtakesCourse. 1) OrC or Vy(R(z,y) = C(y))

16

ITEC,CC, <=

SIGMOD 2015, Moscow, 28.05.15

DL Semantics 4)

Cf C Gy

O .

(O

o

)

o<

17

DL Semantics 4)

IEC,CC, < CICCE

IERCR, < RICRL

SIGMOD 2015, Moscow, 28.05.15

O .

(O

o

)

o<

17

DL Semantics 4)

C,

)
O .

IECCC, < CIccE

o

).

o<

IR CR, < RICR?
IEC(a) < dtec?

T E R(a,b) <= (a*,b*) € R®

17

DL Semantics 4)

o

C

)
O .

)

o<

IEC(a) < dtec?

Z k= R(a,b) <= (a%,b?) € RT

Zisamodel of (T, A) if Tk a, foralinclusionsain 7T
and assertions a in A

SIGMOD 2015, Moscow, 28.05.15

17

Open World Assumption

T = { GraduateStudent C Student
GraduateStudent C FtakesCourse.GraduateCourse }
A = { GraduateStudent(john) }

SIGMOD 2015, Moscow, 28.05.15

18

Open World Assumption

{ GraduateStudent C Student

GraduateStudent C FtakesCourse.GraduateCourse }

{ GraduateStudent(john) }

I,
GraduateStudent A
Student GraduateCourse
j O >0 S
j ohn takesCourse

jOhI’\I1 =3
GraduateStudent™ = {;}
Student™ = {j}
GraduateCourse™ = {s}
takesCourse™ = {(j,s)}
is a model of (T, A)

18

Open World Assumption

= { GraduateStudent C Student

GraduateStudent C FtakesCourse.GraduateCourse }

= { GraduateStudent(john) }

I,
GraduateStudent A
Student GraduateCourse
j O >0 S
j ohn takesCourse
GraduateStudent AI2
Student
GraduateCourse
a OS__ D takesCourse
john

jOhI’\I1 =3
GraduateStudent™ = {;}
Student™ = {j}
GraduateCourse™ = {s}
takesCourse™ = {(j,s)}
is a model of (T, A)
john™ = a
GraduateStudent™ = {a}
Student™ = {a}
GraduateCourse™ = {a}
takesCourse™ = {(a,a)}
is a model of (T, A)

18

Open World Assumption

{ GraduateStudent C Student

GraduateStudent C FtakesCourse.GraduateCourse }

= { GraduateStudent(john) }

I,
GraduateStudent A
Student GraduateCourse
j O >0 S
j ohn takesCourse
GraduateStudent AI2
Student
GraduateCourse
a OS__ D takesCourse
john
I3
GraduateStudent A
Student
jo
john

jOhI’\I1 =3
GraduateStudent™ = {;}
Student™ = {j}
GraduateCourse™ = {s}
takesCourse™ = {(j,s)}

is a model of (T, A)
john™ = a
GraduateStudent™ = {a}
Student™ = {a}
GraduateCourse™ = {a}
takesCourse™ = {(a,a)}

is a model of (T, A)
john® = j
GraduateStudent™ = {;}
Student™ = {j}
GraduateCourse™ = 0
takesCourse™ = 0

is not a model of (T, A)

18

Reasoning: Consistency
a knowledge base K is satisfiable (or consistent)

if there exists at least one model of K
(in other words, K implies no contradictions)

SIGMOD 2015, Moscow, 28.05.15 19

Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of I

(in other words, IC implies no contradictions)

Example

T:
UndergraduateStudent C VtakesCourse.UndergraduateCourse
UndergraduateCourse m GraduateCourse C L

UndergraduateStudent(john)
takesCourse(john, sw)
GraduateCourse(sw)

SIGMOD 2015, Moscow, 28.05.15 19

Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of IC
(in other words, IC implies no contradictions)

Example

T:
UndergraduateStudent C VtakesCourse.UndergraduateCourse
UndergraduateCourse m GraduateCourse C L

A:
UndergraduateStudent(john)

takesCourse(john, sw)
GraduateCourse(sw)

(T, A) is inconsistent:
John (as an undergraduate student) can take only undergraduate courses.

We know, however, that he takes a graduate course,
which cannot be an undergraduate one.

19

Reasoning: Entailment
C, C C, is entailed by K KEC CC,

if Tk C,CC, forallmodels Z of K

(entailment for role inclusions and concept and role assertions is defined similarly)

SIGMOD 2015, Moscow, 28.05.15 20

Reasoning: Entailment

C, C C, is entailed by K KEC CC,
if Tk C,CC, forallmodels Z of K

(entailment for role inclusions and concept and role assertions is defined similarly)

T: VtakesCourse.UndergraduateCourse C UndergraduateStudent
FirstYearStudent C 3takesCourse.UndergraduateCourse.

20

Reasoning: Entailment

C, C C, is entailed by K KEC CC,
if Tk C,CC, forallmodels Z of K

(entailment for role inclusions and concept and role assertions is defined similarly)
vtakesCourse.UndergraduateCourse C UndergraduateStudent

T
FirstYearStudent C 3takesCourse.UndergraduateCourse.

Z; .
FirstYearStudent

UndergraduateStudent
J

85IN0DSND)

®
O

UndergraduateCourse

L =T

T, k= FirstYearStudent C

UndergraduateStudent
20

Reasoning: Entailment
C, C C, is entailed by K KEC CC,
if Tk C,CC, forallmodels Z of K

(entailment for role inclusions and concept and role assertions is defined similarly)
vtakesCourse.UndergraduateCourse C UndergraduateStudent

T:
FirstYearStudent C 3takesCourse.UndergraduateCourse.
7 . 7z,
FirstYearStudent
UndergraduateStudent FirstYearStudent
p ;
o}
]
O
g
®
s 0
UndergraduateCourse UndergraduateCourse
=T =T
T, k= FirstYearStudent [Z

T, k= FirstYearStudent C

UndergraduateStudent UndergraduateStudent

20

Certain Answers to CQs

() =g (%, 9)isaCQwWIth & = (z1,...,x,)
a=(ai,...,ay,)is atuple of individual names from A

g(a) is the result of replacing each z; in 3y ¢ (&, ¥) with a;

2]

Certain Answers to CQs

() =g (%, 9)isaCQwWIth & = (z1,...,x,)
a=(ai,...,ay,)is atuple of individual names from A

g(a) is the result of replacing each z; in 3y ¢ (&, ¥) with a;

a is a certain answer to q(&) over T, A (T, .A) |= q((_i)

if, for any model Z of (T, A), the sentence q(a) is frue in Z

T k= q(a)

2]

Andrea’s Example (Schaerf, 1993)

T: T C Male U Female, Male mFemale C L

A friend(john, susan), friend(jonn, andrea), Female(susan)
loves(susan, andrea), loves(andreaq, bill), Male(bill)

q = Jy, z (friend(john, y) A Female(y) A loves(y, z) A Male(z))

22

Andrea’s Example (Schaerf, 1993)

T: T C Male U Female, Male mFemale C L

A friend(john, susan), friend(jonn, andrea), Female(susan)
loves(susan, andrea), loves(andreaq, bill), Male(bill)

q = Jy, z (friend(john, y) A Female(y) A loves(y, z) A Male(z))

john

bill ® Male A

22

Andrea’s Example (Schaerf, 1993)

T T C Male U Female, Male mFemale C L

A friend(john, susan), friend(jonn, andrea), Female(susan)
loves(susan, andrea), loves(andreaq, bill), Male(bill)

q = Jy, z (friend(john, y) A Female(y) A loves(y, z) A Male(z))

john john

andrea®-+ @ susan
_ | Male Female

SO0

bill ® Male A bill ® Male A

22

Andrea’s Example (Schaerf, 1993)

T T C Male U Female, Male mFemale C L

A friend(john, susan), friend(jonn, andrea), Female(susan)
loves(susan, andrea), loves(andreaq, bill), Male(bill)

q = Jy, z (friend(john, y) A Female(y) A loves(y, z) A Male(z))

john john

andrea®-+ @ susan
_ | Male Female

SO0

bill ® Male A bill ® Male A
\ J N

the same as checking whether john is an instance of 3friend.(Female M 3loves.Male)

22

DL Zoo

ALCHT

AL - attributive language
C - complement =C
T -role inverses P~

‘H - role inclusions Ry C R,

(ALC is multi-modal K,,,)

23

DL Zoo

ALCHT

AL - attributive language
C - complement =C (ALC is multi-modal K,,,)
T -role inverses P~
‘H - role inclusions Ry C R,

S - ALC + fransitive roles
N —unqgualified number restrictions > q R. T
O - nominadls {a}

SHOIN =~ OWL 1.0

Q — quadlified number restrictions > q R.C

23

DL Zoo

ALCHT
AL - attributive language
C - complement =C (ALC is multi-modal K,,,)
T -role inverses P~
‘H - role inclusions Ry C R,
S - ALC + fransitive roles
N —unqgualified number restrictions > q R. T
O - nominadls {a}
SHOIN =~ OWL 1.0
Q — quadlified number restrictions > q R.C
F - functionality constraints > 2 R.T C L
SHIF ~ OWL Lite

23

DL Zoo

ALCHT

AL - attributive language
C - complement =C
T -role inverses P~
‘H - role inclusions Ry C R,

S - ALC + fransitive roles
N —unqgualified number restrictions > q R. T
O - nominadls {a}

Q - qualified number restrictions > g R.C
F - functionality constraints > 2 R.T C L

R - role chains and 3 R.Self

(ALC is multi-modal K,,,)

SHOIN =~ OWL 1.0

SHIF =~ OWL Lite

SROIQ ~ OWL?2

23

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHZI KBs
and N2ExpTime-complete for SROZ Q KBs

SIGMOD 2015, Moscow, 28.05.15 24

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHZI KBs
and N2ExpTime-complete for SROZ Q KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHZ and SROZQ KBs

SIGMOD 2015, Moscow, 28.05.15 24

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHZI KBs
and N2ExpTime-complete for SROZ Q KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHZ and SROZQ KBs

CQ entailment over ALCHZI KBs is 2ExpTime-complete

CQ entailiment over SROZQ is not even known to be decidable

SIGMOD 2015, Moscow, 28.05.15 24

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHZI KBs
and N2ExpTime-complete for SROZ Q KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHZ and SROZQ KBs

CQ entailment over ALCHZI KBs is 2ExpTime-complete

CQ entailiment over SROZQ is not even known to be decidable

DL Complexity Navigator: www.cs.man.ac.uk/~ezolin/d1l

SIGMOD 2015, Moscow, 28.05.15 24

www.cs.man.ac.uk/~ezolin/dl

Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHZI KBs
and N2ExpTime-complete for SROZ Q KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHZ and SROZQ KBs

CQ entailment over ALCHZI KBs is 2ExpTime-complete

CQ entailiment over SROZQ is not even known to be decidable

DL Complexity Navigator: www.cs.man.ac.uk/~ezolin/d1l

practical reasoners for OWL 2 DL: FaCT++, HermiT, Pellet

SIGMOD 2015, Moscow, 28.05.15 24

www.cs.man.ac.uk/~ezolin/dl

Part 3

Conjunctive Query Rewriting

SIGMOD 2015, Moscow, 28.05.15

25

Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

union of
conjunctive
queries q’

[mox7] { AC?

SIGMOD 2015, Moscow, 28.05.15 26

Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q
~——— union of
@—» conjunctive
/_J queries q’
([TBoxT | ACO

([ABox.A -

T

ABox A |

given a CQ q(&) over T, rewrite g(&) info an FO query ¢’(&) such that
foral Aanda, T,ARq(a) iff AREq'(ad)

SIGMOD 2015, Moscow, 28.05.15 26

Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q
~——— union of
@—» conjunctive
/_J queries q’
([TBoxT | ACO

([ABox.A -

T

ABox A |

given a CQ q(&) over T, rewrite g(&) info an FO query ¢’(&) such that
foral Aanda, T,ARq(a) iff AREq'(ad)

FO-rewritability: only possible in DL with query answering in FO (=AC")
for data complexity:
OWL 2 QL

SIGMOD 2015, Moscow, 28.05.15 26

W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R == P, | P~
basic concepts B = 1 | A | 3R
concepts C == B | 3R.B

(3R is an abbreviation for 3IR.T)
a TBox T is a finite set of axioms of the form

B LC C, R, C R,, B:.MB, C 1, RMR, C L
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ag(a;) and Py(a;, a;)

(plus inequality constraints a; # a; for < # 3)

27

W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R == P, | P~
basic concepts B = 1 | A | 3R
concepts C == B | 3R.B

(3R is an abbreviation for 3IR.T)
a TBox T is a finite set of axioms of the form

B LC C, R, C R,, B:.MB, C 1, RMR, C L
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ag(a;) and Py(a;, a;)

(plus inequality constraints a; # a; for < # 3)

NB. axioms B’ C 3JR.B are ‘syntactic sugar’

27

W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R == P, | P~
basic concepts B = 1 | A | 3R
concepts C == B | DB

(3R is an abbreviation for 3IR.T)
a TBox T is a finite set of axioms of the form

B LC C, R, C R,, B:.MB, C 1, RMR, C L
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ag(a;) and Py(a;, a;)

(plus inequality constraints a; # a; for < # 3)

NB. axioms B’ C 3JR.B are ‘syntactic sugar’ B'C3Rrp 3RFC B RECR

27

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

?\2 1

O—0t

7 6 5 (4)_/

28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

(3)\2 1

o—0t

7 6 5 (4)_/’

28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

:\2 1

o—0t

7 6 5 :/

28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

2\2 1

o—0t

7 6 5 :_/’

28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

:>H t

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}

TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

o
20, QO >

ca: g < ReachableFromTarget(s)

(T, Ag,:) = q iff thereisapathfromstotin G

SIGMOD 2015, Moscow, 28.05.15 28

Can We Use 3R.A C BinQlL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V, E) and s, t € V, decide whether
there is a directed path from s to t in G’

ABox: Ag: = {edge(vi,vs2) | (v1,v2) € E} U {ReachableFromlarget(t)}
TBox: T = {3edge.ReachableFromlarget C ReachableFromTarget }

o
20, QO >

ca: g < ReachableFromTarget(s)

(T, Ag,:) = q iff thereisapathfromstotin G

T and q do not depend on G, s, t
P (T, Ac:) = q?" is NLogSpace-hard for data complexity
= g and T are not FO-rewritable
SIGMOD 2015, Moscow, 28.05.15 28

CanWe lUse AC BUCinQl?

graph 3-colouring problem is NP-complete: E
‘given a graph G = (V, E), decide whether its vertices can be painted

in one of three colours so that no adjacent vertices have the same colour’

represent G as the ABox Ag = {R(vy,v2) | {v1,v2} € E}

3-colouring is encoded by the TBox T with the axioms

TCC,UC,UC;, C;NC;C1l, C;N3RC,CB, 1<i<3

29

CanWe lUse AC BUCinQl?

graph 3-colouring problem is NP-complete: E

‘given a graph G = (V, E), decide whether its vertices can be painted
in one of three colours so that no adjacent vertices have the same colour’

represent G as the ABox Ag = {R(vy,v2) | {v1,v2} € E}

3-colouring is encoded by the TBox T with the axioms

TCC,UC,UC;, C;NC;C1l, C;N3RC,CB, 1<i<3

consider CQ qg < B(y)

(T, Ag) £ q iff Gis 3-colourable

7T and g do not depend on G
—p- (T, Ag) E q? is coNP-hard for data complexity
= g ONd T are not FO-rewritable

29

OWL 2 QL as TGDs

(aka Datalog* aka existential rules)

concept inclusion tfuple-generating dependency
PhDStudent C Student =~ Vz (PhDStudent(xz) — Student(x))
Student C IHasTutor =~ Vz (Student(z) — 3y HasTutor(z, y))

SIGMOD 2015, Moscow, 28.05.15 30

OWL 2 QL as TGDs

(aka Datalog* aka existential rules)

concept inclusion tfuple-generating dependency
PhDStudent C Student =~ Vz (PhDStudent(xz) — Student(x))
Student C IHasTutor =~ Vz (Student(z) — 3y HasTutor(z, y))

TGDs: Vavy (¢(Z,§) — 329 (&, 2))

 and 1 are conjunctions of predicate atoms

SIGMOD 2015, Moscow, 28.05.15 30

OWL 2 QL as TGDs

(aka Datalog* aka existential rules)

concept inclusion tfuple-generating dependency
PhDStudent C Student =~ Vz (PhDStudent(xz) — Student(x))
Student C IHasTutor =~ Vz (Student(z) — 3y HasTutor(z, y))

TGDs: Vavy (¢(Z,§) — 329 (&, 2))

 and 1 are conjunctions of predicate atoms

linear TGDs: ¢ and v are atoms (all OWL 2 QL axioms are linear)

Cali, Gottlob & Pieris, 2010: sets of sticky TGDs are FO-rewritable
in particular, linear TGDs

SIGMOD 2015, Moscow, 28.05.15 30

OWL 2 QL as TGDs

(aka Datalog* aka existential rules)

concept inclusion tfuple-generating dependency
PhDStudent C Student =~ Vz (PhDStudent(xz) — Student(x))
Student C IHasTutor =~ Vz (Student(z) — 3y HasTutor(z, y))

TGDs: Vavy (¢(Z,§) — 329 (&, 2))

 and 1 are conjunctions of predicate atoms

linear TGDs: ¢ and v are atoms (all OWL 2 QL axioms are linear)

Cali, Gottlob & Pieris, 2010: sets of sticky TGDs are FO-rewritable
in particular, linear TGDs

these TGDs are used with the open world assumption (for enriching data)
TGDs in DBs are used with the closed world assumption (integrity constraints)

SIGMOD 2015, Moscow, 28.05.15 30

Practical Query Answering in OWL 2 QL

systems
- QuONto (Rome, 2005)
- REQUIEM (Oxford, 2009) / Stardog (Washington, DC, 2011)
- Presto (Rome, 2010)
- 1QARQOS (Athens, 2011)
- Rapid (Athens-Oxford, 2011)
- Nyaya (Milan-Oxford, 2010) for TGDs
- Clipper (Vienna, 2012) for Horn-SHIQ
- kyrie (Madrid, 2013)
— Pure (Montpellier, 2013) for TGDs
- Quest/ontop (Bolzano, 2011)

31

Practical Query Answering in OWL 2 QL

systems
- QuONto (Rome, 2005)
- REQUIEM (Oxford, 2009) / Stardog (Washington, DC, 2011)
- Presto (Rome, 2010)
- 1QARQOS (Athens, 2011)
- Rapid (Athens-Oxford, 2011)
- Nyaya (Milan-Oxford, 2010) for TGDs
- Clipper (Vienna, 2012) for Horn-SHIQ
- kyrie (Madrid, 2013)
— Pure (Montpellier, 2013) for TGDs
- Quest/ontop (Bolzano, 2011)

not so smoothly: the size of implemented rewritings ¢’ is O((|q| - | T1])")
(can’t say ‘query is small or fixed” any longer)

31

Does a Rewriting Have to be Exponential?

TBox mother C parent and father C parent

query | grandparent(z, z) « parent(x, y) A parent(y, z)

SIGMOD 2015, Moscow, 28.05.15

32

Does a Rewriting Have to be Exponential?

TBox mother C parent and father C parent

query | grandparent(z, z) < parent(xz,y) A parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case

grandparent(z, z) + parent(x, y) A parent(y, z)
grandparent(x, z) < father(x, y) A father(y, z)
grandparent(z, z) < mother(xz, y) A father(y, z)

SIGMOD 2015, Moscow, 28.05.15

32

Does a Rewriting Have to be Exponential?

TBox mother C parent and father C parent

query | grandparent(z, z) < parent(xz,y) A parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case

grandparent(z, z) + parent(x, y) A parent(y, z)
grandparent(x, z) < father(x, y) A father(y, z)
grandparent(x, z) < mother(x, y) A father(y, z)

PE-rewritings (positive existential queries = select-project-join-union) IV A

grandparent(z, z) + (parent(x,y) V father(z, y) v mother(z, y)) A
(parent(y, z) V father(y, z) v mother(y, z))

SIGMOD 2015, Moscow, 28.05.15 32

Does a Rewriting Have to be Exponential?

TBox mother C parent and father C parent

query | grandparent(z, z) < parent(xz,y) A parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case

grandparent(z, z) + parent(x, y) A parent(y, z)
grandparent(x, z) < father(x, y) A father(y, z)
grandparent(x, z) < mother(x, y) A father(y, z)

PE-rewritings (positive existential queries = select-project-join-union) IV A

grandparent(z, z) + (parent(x,y) V father(z, y) v mother(z, y)) A
(parent(y, z) V father(y, z) v mother(y, z))

NDL-rewriting (non-recursive Datalog ~ SQL with views) 3 Vv A +structure sharing

grandparent(z, z) + ext-parent(x, y) A ext-parent(y, z)
ext-parent(z, y) < parent(x, y)

ext-parent(x, y) « father(x, y)

ext-parent(z, y) < mother(z, y)

SIGMOD 2015, Moscow, 28.05.15 32

Does a Rewriting Have to be Exponential?

TBox mother C parent and father C parent

query | grandparent(z, z) < parent(xz,y) A parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case

grandparent(z, z) + parent(x, y) A parent(y, z)
grandparent(x, z) < father(x, y) A father(y, z)
grandparent(x, z) < mother(x, y) A father(y, z)

PE-rewritings (positive existential queries = select-project-join-union) IV A

grandparent(z, z) + (parent(x,y) V father(z, y) v mother(z, y)) A
(parent(y, z) V father(y, z) v mother(y, z))

NDL-rewriting (non-recursive Datalog ~ SQL with views) 3 Vv A +structure sharing

grandparent(z, z) + ext-parent(x, y) A ext-parent(y, z)
ext-parent(z, y) < parent(x, y)

ext-parent(x, y) « father(x, y)

ext-parent(z, y) < mother(z, y)

FO-rewriting (first-order queries ~ QL) VvV VvV A~

SIGMOD 2015, Moscow, 28.05.15 32

Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms

SIGMOD 2015, Moscow, 28.05.15

B’ C 3R.B
~ RDF Schema

33

Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B’ C 3R.B
=~ RDF Schema

q(Z€) and A flat T s ge\t(Z) LY replacing

A(u) =—p \/ A'(uw) v \/ FvR(u,v)
TEA'CA TE3IRCA

P(u,v) e— \/ R(u,v)
TERCP

for any CQ q(&) and any flat OWL 2 QL TBox T,
gext() is a PE-rewriting of ¢ and T of size O(|q| - | T])

SIGMOD 2015, Moscow, 28.05.15 33

Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B’ C 3R.B
=~ RDF Schema

q(Z€) and A flat T s ge\t(Z) LY replacing

A(u) =—p \/ A'(uw) v \/ FvR(u,v)
TEA'CA TE3IRCA

P(u,v) e— \/ R(u,v)
TERCP

for any CQ q(&) and any flat OWL 2 QL TBox T,
gext() is a PE-rewriting of ¢ and T of size O(|q| - | T])

SIGMOD 2015, Moscow, 28.05.15 33

Who Works with Professors?

TBox:

worksOn™ LC involves
isManagedBy L involves

in English: find those who work with professors

g(x) <+ worksOn(x,y) A involves(y,z) A Professor(z)

SIGMOD 2015, Moscow, 28.05.15 34

Who Works with Professors?

TBox:

worksOn™ LC involves
isManagedBy L involves

in English: find those who work with professors

q(z) + worksOn(z,y) Anvolves(y, z) Professor(z)

worksOn(z, y) V isManagedBy(y, z) V involves(y, z)

SIGMOD 2015, Moscow, 28.05.15 34

Rewriting over H-complete ABoxes

an ABox A is H-complete with respect to T if

e A(a) e A whenever A'(a) e A aond TEALCA
e A(a) e A whenever R(a,b) e A ond TEIRCA
e P(a,b) € A whenever R(a,b)e A ond TERLCP

SIGMOD 2015, Moscow, 28.05.15 35

Rewriting over H-complete ABoxes

an ABox A is H-complete with respect to T if

e A(a) e A whenever A'(a) e A aond TEALCA
e A(a) e A whenever R(a,b) e A ond TEIRCA
e P(a,b) € A whenever R(a,b)e A ond TERLCP

an FO-query ¢’(Z) is an FO-rewriting of q(Z) and T~ over H-complete ABoxes if,

for any H-complete (w.r.t. 7) ABox .A and any a,
(T, A) = q(a) iff A= q'(a@)

(thus we ignore the axioms considered in the flat rewriting)

SIGMOD 2015, Moscow, 28.05.15 35

Case 2: Who Works with Professors (2)?

RA C IworksOn.Project worksOn™ LC involves
Project C JisManagedBy.Prof isManagedBy L involves

RA(chris), worksOn(chris, dyn), Project(dyn), Lecturer(dave),

worksOn(dave, dyn)

1

' Prof) .
; w; = w i

\ O chrisw; we / 1 _ 3worksOn.Project

1 / W2 = W3isManagedBy.Prof

\ >
m !
\ U 17) !
\ [0) [0) /
\ o> !
\ OO0 1
\ c | = /
\ g £ / e S,
\ = / i Prof 1
\ . . ! \
« Project O chris wy v .odyn wa!
\ A
\ I / \ @ ;
\ \
\ 6 Im /I \ % 8 /
\ 2| O / \ O | > f
\ x| =2 / \ c |5 !
\ ol © I \ [OF IS /
\\ ; E 1/ \\ %J £ Il
\ ' 1 \ 1
ohris L [invoves— | ldyn/ o
y = Olves— d
\ ! \
worksOn .NG
W RA \Project ” worksop,

Lecturer

36

Case 2: Rewriting the Labelled Nulls

(z)

Professor h1 Professor
—————————————————————————————————— -0z
5“ A
O [%3 %3
OO 0]
o2 2
oo 0
S >
olEe £
32 ha v
R R — - - — - - —— - - —— - - - - - - - - - —— - — - -O
A A
ol c
3| & 2
X[= -
9) o
2| 2 E
h1 x
i e il @

SIGMOD 2015, Moscow, 28.05.15 37

Case 2: Rewriting the Labelled Nulls

worksOn(zx, y) A Project(y)

RA(x)
<%

Professor RN Professor
Qe T 0=
5

[%] wv
o8) g
219 ~ % °
[ON i< ~ o £
E ha R

R R — - - - - - - - - - —— - - - - - - - - - - - - — - 0O

s A

L 6

2 2

o

g E:

hy _.z
q(x)

SIGMOD 2015, Moscow, 28.05.15 37

Case 2: Rewriting the Labelled Nulls

worksOn(x, y) A Project(y)
RA(x) A Professor(z) A (x = z)

RA(x)

Professor = ~ Professor

Ou===cof-~" - N - -------- Q=

> A~
[aa] N
Ol w n N
oo 1]
o= =
(o}l Ire] S o
cl= K >
olEc S =
= h1 R
Project O<=--- -/ ------- - "o O------ - -a o - -
A A
| ! C
ol 8 O
L2l = Y
ol @ I§)
3| 2 2
h1 T
_________________________________ _'__________________
q(x)

(x and z are the roots of the free witness)

SIGMOD 2015, Moscow, 28.05.15 37

Case 2: Rewriting the Labelled Nulls

worksOn(x, y) A Project(y)

RA(x) RA(x) A Professor(z) A (x = z)
~ R
Professor R Professor
ORESER - - W - - --------- Q=
5 A AN
Ol w n
0|8 g
218 - % S %
o|E ~ . 1=
K] S Yy
PIOjeCt Q= == =~ === = = hy So MR N
Y A hs <
| c
8 3
= <
E E
1 o P
q(z)

. (xz and z are the roofs of the tree witness)
PE-rewriting (over H-complete ABoxes):

¢ (x) <+ RA(z) Vv (worksOn(z,y) A Project(y)) Vv
(RA(x) A Professor(z) A (z = z)) V
(worksOn(z, y) A involves(y, z) A Professor(z))
SIGMOD 2015, Moscow, 28.05.15 37

Tree-Witness Rewriting

TBox T~ AC3R, 3R-C 3T, BC3IR-, 3IRC3S

O

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T~ AC3R, 3IR-C 3T, BLC 3R,

SIGMOD 2015, Moscow, 28.05.15

JRC 38

38

Tree-Witness Rewriting

TBox T~ AC3R, 3R-C 3T, BC3IR-, 3IRC3S

Az R(z,y) N (y =19')

3z R(x, z)

Jx R(x’,z) A (' = x)

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T~ AC3R, 3R-C 3T, BC3IR-, 3IRC3S

Iz R(z,y) A (y =)

: B
”'yu T B
\ l
Ao x
AGY A = 2') A,
-- o

Jdz R(x’,z) A (2' =)

SIGMOD 2015, Moscow, 28.05.15 38

Tree-Witness Rewriting

TBox T~ AC3R, 3R-C 3T, BC3IR-, 3IRC3S

Iz R(z,y) A (y =)

B Ky, = ")

Jx R(z’,z) A (' =)

(@) = \/ ag(A 5(2) A /\twt)

@ independent set §(2)€q\qe tco
of free witnesses

(Kikot, K & Zakharyaschev, 2012)

SIGMOD 2015, Moscow, 28.05.15

Rewritings as Boolean Functions

hypergraph H':
vertices = atoms of the query
hyperedges = free witnesses

SIGMOD 2015, Moscow, 28.05.15

o

R(:B, y)

(@)
R(a",y")

Rewritings as Boolean Functions

hypergraph H':
vertices = atoms of the query

hyperedges = free witnesses

(@)
R(:I:, y)

(@)
R(a",y")

hypergraph function of H = (V, E):

fm= \ (/\va /\pe)

XCFE veV\VX ecX
X independent

SIGMOD 2015, Moscow, 28.05.15 39

Rewritings as Boolean Functions

hypergraph H':
vertices = atoms of the query

hyperedges = free witnesses

o o) O
R(z,y) R(z',y") R(z",y")

hypergraph function of H = (V, E):

fm= \ (/\va /\pe)

XCFE vEV\VX ecX
X independent

(Kikot, K, Podolskii & Zakharyaschev, 2012) lower bounds from
circuit complexity
exponential non-recursive datalog (and positive existential) rewritings

superpolynomial first-order rewritings (unless NP C P/poly)
SIGMOD 2015, Moscow, 28.05.15

Short Rewritings in Theory

if go,Ngy, =0 or g, Cq, or q, C qi. foreach pairt; and t,, then

compatible

/ — —
@W@ = A (s@v V tw)
S(2)eq t: S(2)eqs
is a rewriting (over H-complete ABoxes)

SIGMOD 2015, Moscow, 28.05.15 40

Short Rewritings in Theory

if go,Ngy, =0 or g, Cq, or q, C qi. foreach pairt; and t,, then

compatible

/ — —
@W@ = A (s@v V tw)
S(2)eq t: S(2)eqs
is a rewriting (over H-complete ABoxes)

Ql: replace 5(z) with \/ §'(2)
TES'CS
— polynomial positive existential rewriting
provided that the number of free withesses is and they are
not the case in general!

SIGMOD 2015, Moscow, 28.05.15 40

Part 4

Practical OBDA with Ontop

SIGMOD 2015, Moscow, 28.05.15

41

OBDA system Ontop

http://ontop.inf.unibz.it

- implemented at the Free University of Bozen-Bolzano
(Mariano Rodriguez-Muro, Martin Rezk, Guohui Xiao)

= open-source

- available as a plugin for Protégé 4 & 5, SPARQL end-point,
OWL APl and Sesame libraries

TN

SIGMOD 2015, Moscow, 28.05.15 42

http://ontop.inf.unibz.it

OBDA with Databases

rewriting

unfolding

[SPARQL query q]—»@—» FO-query ¢’

[vir’ruol ABOX] 6

Ve

*
[R2RI\/IL mMappings M]
¥

SQL

ABoOXx virtualisation

i data D l

43

OBDA with Databases

rewriting unfolding
[SPARQL query q]—»@—»l FO-query ¢’ I =e | saL
*

[R2RI\/IL mMappings M]
] Y
[vir’ruol ABOX A |- Q i data D l

ABoOXx virtualisation

Why SQL rewritings are large:
(1) alarge number of tree witnesses
(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) mulfiple definitions of the ontology tferms in R2ZRML mappings M

43

OBDA with Databases

rewriting unfolding

[SPARQL query q]—»@—»l FO-query ¢ I =e

*

[R2RML mMappings M]
] Y
[vir’ruol ABOX A |- Q i data D l

ABoOXx virtualisation

SQL

\

Why SQL rewritings are large: es
\d CQ-S / On‘o‘ g‘
t

(H a Iorge nl‘la'{pqwﬁeé’é M%esses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) mulfiple definitions of the ontology tferms in R2ZRML mappings M

43

OBDA with Databases

rewriting unfolding

[SPARQL query q]—»@—»l FO-query ¢ I =a

*

[R2RML mMappings M]
] Y
[vir’ruol ABOX A |- Q i data D l

ABoOXx virtualisation

SQL

\

Why SQL rewritings are large: es
\d CQ-S / On‘o‘ g‘
t

(H a Iorge nl‘lg{pqwﬁeé’é M%esses

(2) large concept/role hierarchies in OWL 2 Qlﬁ)a‘wﬂbé\/‘?'

i T folloW fro
ons
(&) muIWﬁ)&ns of the ontology terms in R2ZRML mappings M

SIGMOD 2015, Moscow, 28.05.15 43

Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

- database Hitle

movie ID

fitle

production year

728 | '‘Django Unchained’

2012

- dependencies

Ym (Elp, r castinfo(p, m,r) — 3t, y fitle(m, t, y))

castinfo
person ID | movie ID | person role
n37 728 1
n38 728 1
(FK)

VmVt, Vi, (Jy tifle(m, ti,y) A Jy title(m, t2,y) — (b1 =t2)) (PKy)
YmVy,Vy- (Elt title(m, t,y,) A 3t tifle(m, t,ys) — (y1 = yz)) (PK3)

44

http://www.imdb.com/interfaces

Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

- database Hitle
movie ID fitle | production year
‘Django Unchained’

728

2012

- dependencies

Movie Ontology MO http://www.movieontology.org
mo:Movie = Amo:ftitle,
mo:Movie = Amo:cast,

Ym (Elp, r castinfo(p, m,r) — 3t, y fitle(m, t, y))

castinfo
person ID | movie ID | person role
n37 728 1
n38 728 1
(FK)

VmVt, Vi, (Jy tifle(m, ti,y) A Jy title(m, t2,y) — (b1 =t2)) (PKy)
YmVy,Vy- (Elt title(m, t,y,) A 3t tifle(m, t,ys) — (y1 = yz)) (PK3)

mo:Movie C Amo:year,
dmo:cast— C mo:Person, . ..

44

http://www.imdb.com/interfaces
http://www.movieontology.org

Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

- database Hitle
movie ID fitle | production year
‘Django Unchained’

728

2012

- dependencies

Ym (Elp, r castinfo(p, m,r) — 3t, y fitle(m, t, y))

castinfo
person ID | movie ID | person role
n37 728 1
n38 728 1
(FK)

VmVt, Vi, (Ely fitle(m, t;,y) A y fitle(m, t2,y) — (t1 = tz)) (PK1)
YmVy,Vy- (Ht title(m, t,y,) A 3t tifle(m, t,ys) — (y1 = yz)) (PK3)
Movie Ontology MO http://www.movieontology.org
mo:Movie = dmo:title, mo:Movie C dAmo:year,
mo:Movie = Amo:cast, dmo.:cast— C mo:Person, ...
Mappings (created by the Ontop development team)
mo:Movie(m), mo:title(m, t), mo:year(m,y) < fitle(m,t,y) (M)
mo:cast(m, p), mo.Person(p) < castinfo(p, m, r) (M2)

44

http://www.imdb.com/interfaces
http://www.movieontology.org

Ontop: T-mappings

R - forward chaining H-complete ABox A’]
1 ABox A i
virtualisation
virtualisation [T -mapping MT
mapping M
composition
data D

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

forward chaining H-complete ABox A’]

» ABox A i
virtualisation
virtualisation [T -mapping MT
mapping M
composition
data D

mo:Movie = IAmo:title, mo:Movie C dAmo.year,
mo:Movie = dmo:cast, dmo:cast— C mo:Person

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

forward chaining H-complete ABox A’]

virtualisation [T -mapping MT
mapping M

composition

virtualisation

data D

mo:Movie = IAmo:title, mo:Movie C Amo:year,
mo:Movie = dmo:cast, dmo:cast— C mo:Person

mo:Movie(m), mo:title(m, t), mo:year(m,y) < fitle(m,t,y) My)
mo:cast(m, p), mo:Person(p) < castinfo(p, m,r) (M)

SIGMOD 2015, Moscow, 28.05.15 45

Ontop: T-mappings

forward chaining H-complete ABox A’]

1 ABox A
virtualisation
virtualisation [T -mapping MT
composition
data D

T mo:Movie = IAmo:title, mo:Movie C Amo:year,

mo:Movie = dmo:cast, dmo:cast— C mo:Person
M mo:Movie(m), mo:title(m, t), mo:year(m,y) < fitle(m,t,y) My

mo:cast(m, p), mo:Person(p) <« castinfo(p, m, r) (M)

- mo:Movie(m) < title(m,t,y) by (M)
mo:Movie(m) < castinfo(p, m, r) by (M) + Imo:cast £ mo:Movie

45

Ontop: T-mappings

forward chaining H-complete ABox A’]

flat TBox T~
virtualisation [T -mapping MT
mapping M

virtualisation

composition
data D

T mo:Movie = IAmo:title, mo:Movie C Amo:year,

mo:Movie = dmo:cast, dmo:cast— C mo:Person

mo:Movie(m), mo:title(m, t), mo:year(m,y) < fitle(m,t,y) My)
M . . .

mo:cast(m, p), mo:Person(p) < castinfo(p, m,r) My)
MT mo:Mow:e(m) — Tiﬂe(m, t,y) by (My)

: by (M5) + dmo:cast T mo:Movie

redundant by (FK)
Ym (Ep, r castinfo(p, m,r) — 3t, y title(m, t, y))

SIGMOD 2015, Moscow, 28.05.15 45

Optimising T-mappings

e using foreign keys (inclusion dependencies)

SIGMOD 2015, Moscow, 28.05.15

46

Optimising T-mappings

e using foreign keys (inclusion dependencies)

e using disjunction

T mo:Actor C mo:Arfist, mo:Artist C mo:Person,
mo.Director E mo:Person, mo:Editor C mo:Person, . ..
mo:Actor(p) < castinfo(p, m,r), (r = 1) (Myp)
mo:Editor(p) < castinfo(p, m,r), (r = 6) (Me)
SIGMOD 2015, Moscow, 28.05.15

46

Optimising T-mappings

e using foreign keys (inclusion dependencies)

e using disjunction

T mo:Actor C mo:Arfist, mo:Artist C mo:Person,
mo.Director E mo:Person, mo:Editor C mo:Person, . ..
mo:Actor(p) < castinfo(p, m,r), (r = 1) (Myp)
mo:Editor(p) < castinfo(p, m,r), (r = 6) (Me)

MT | mo:Person(p) « castinfo(p,m,r),((r =1)V:--V (r = 6))

SIGMOD 2015, Moscow, 28.05.15

46

Unfolding with Semantic Query Optimisation

Query
q(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15

47

Unfolding with Semantic Query Optimisation

Query
q(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

Rewriting

q'(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15

47

Unfolding with Semantic Query Optimisation

Query
q(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)
Rewriting

q'(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

mo:Movie(m) <« ftitle(m,t,y) Mp)
M | motitle(m, t) « title(m, t,y) (My)
mo:year(m, y) + ftitle(m, t, y) (M3s)

SIGMOD 2015, Moscow, 28.05.15

47

Unfolding with Semantic Query Optimisation

Query

q(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

Rewriting

q'(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

mo:Movie(m) <« title(m, t, y)
M | mo:title(m, t) « title(m, t,y)
mo:year(m,y) <« ftifle(m, t,y)

(M)
(M2)
(Ms)

Unfolding

q*(t,y) « fitle(m,to, yo), title(m, t,y,), title(m, ts, y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15

47

Unfolding with Semantic Query Optimisation

Query
q(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)
Rewriting

q'(t,y) < mo:Movie(m), mo:title(m, t), mo:year(m,y), (y > 2010)

mo:Movie(m) <« ftitle(m,t,y) (M)
M | mortitie(m, t) « tifle(m, t, y) (M)

mo:year(m,y) <+ title(m,t,y) (M3)
Unfolding

q*(t,y) « fitle(m,to, yo), title(m, t,y,), title(m, ts, y), (y > 2010)

primary | VmVt,Vt, (Ely fifle(m, t1,y) A Jy fitle(m, ta, y) — (t1 = tz)) (PKy)
keys VmVy: Yy, (3t title(m, t, y1) A Fttitle(m, t,ys) — (y1 = y2)) (PKa)

Semantic Query Optimisation
q'(t,y) « title(m,t,y), (y > 2010)

47

Practical OBDA with Ontop

tw-rewriting @ unfolding

(=)0
composition @

ontology T /
mapping M

[H—comple’re ABox A} <

ABox virfualisation

O tree-witness rewriting quw over H-complete ABoxes (no concept/role hierarchies)
O T-mapping = system mapping M + T makes virtual ABoxes H-complete

® T-mapping is simplified using SQO and SQL features
constructed and opftimised for 7~ and X only once
O unfolding uses SQO to produce small and efficient SQL queries
48

References (1)

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini and R. Rosati. Linking
Data to Ontologies. J. Data Semantics 10: 133-173 (2008)

A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev: The DL-Lite Family and
Relations. J. Artif. Intell. Res. (JAIR) 36:1-69 (2009)

A. Cali, G. Gottlob and A. Pieris. Query Rewriting under Non-Guarded Rules. In Proc.
AMW 2010

M. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In Proc.
STOC 1982: 137-146

D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies.
ACM Trans. Database Syst., 4(4):455-469, 1979

D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under func-
fional and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167-189, 1984

A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited. Proc. PODS 2008: 149-158

M. Rodriguez-Muro and D. Calvanese. Semanfic Index: Scalable Query Answering
without Forward Chaining or Exponential Rewritings Posters of ISWC 2011

M. Rodriguez-Muro and D. Calvanese. Dependencies: Making Ontology Based Data
Access Work. Proc. AMW 2011

G. Gottlob and T. Schwentick. Rewriting Ontological Queries into Small Nonrecursive
Datalog Programs. Proc. KR 2012

49

References (2)

S. Kikot, R. Kontchakov, V. Podolskii and M. Zakharyaschev: Exponential Lower Bounds
and Separation for Query Rewriting. Proc. ICALP (2) 2012: 263-274

F. Baader, S. Brandt and C. Lutz. Pushing the EL envelope. Proc. IJCAI 2005

B. N. Grosof, |. Horrocks, R. Volz and S. Decker. Description logic programs: Combining
logic programs with description logic. Proc. WWW 2003

A. Cdali, G. Gottlob and A. Pieris. Advanced Processing for Ontological Queries. PVLDB
3(1): 554-565 (2010)

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini and R. Rosati. DL-Lite: Tractable
Description Logics for Ontologies. Proc. AAAI 2005: 602-607

A. Chortaras, D. Trivela and G. Stamou. Optimized query rewriting for OWL 2 QL. Proc.
CADE 2011

T. Eiter, Ortiz, M. Simkus, T.-K. Tran and G. Xico. Query rewriting for Horn-SHIQ plus rules.
Proc. AAAI 2012

M. Kénig, M. Leclére, M.-L. Mugnier and M. Thomazo: A sound and complete backward
chaining algorithm for existential rules. Proc. RR 2012

M. Rodriguez-Muro, R. Kontchakov and M. Zakharyaschev. Ontology-Based Data Ac-
cess: Ontop of Databases. Proc. ISWC 2013
R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao and M. Zakharyaschev. Answering
SPARQL Queries under the OWL 2 QL Entailment Regime with Databases. Proc. ISWC
2014

50

