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Data Management: New Challenges

• Statoil (Norway)

many databases, e.g., EPDS (Exploration and Production Data Store
over 1500 tables

historical exploration data (e.g., layers of rocks, porosity),

production logs, maps, etc.
business information such as license areas and companies

direct data access by engineers (and geologists in particular) is often challenging
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Data Management: New Challenges

• Statoil (Norway)

many databases, e.g., EPDS (Exploration and Production Data Store
over 1500 tables

historical exploration data (e.g., layers of rocks, porosity),

production logs, maps, etc.
business information such as license areas and companies

direct data access by engineers (and geologists in particular) is often challenging

• Siemens Energy (Germany)

power generation facilities (gas and steam turbines)

50 service centres linked to a common database

each turbine
2000 sensors
150 tables

30 GB of data is generated daily (hundreds of terabytes in total)
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Ontology-Based Data Access

Aim: to achieve logical transparency in accessing data
– hide from the user where and how data is stored
– present only a conceptual view of the data
– query the data sources through the conceptual model using RDBMSs
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Issues in OBDA

• what is the right ontology language?

• there is a wide spectrum of languages that differ in
expressive power and complexity of inference

• scalability to very large amounts of data is key
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Issues in OBDA

• what is the right ontology language?

• there is a wide spectrum of languages that differ in
expressive power and complexity of inference

• scalability to very large amounts of data is key

• what is the query language?

• how do we connect ontologies to data sources?

• multiple data sources and ontologies

• available tools?

• sound and complete reasoning
• practical scalability
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Part 1

Databases and Logic
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Databases: Specifying Schema

an Entity-Relationship diagram
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Databases: Specifying Schema

an Entity-Relationship diagram

Director

ID

name

Movie

ID

title

year

EuropeanDirector

directed

ISA

integrity constraints or dependencies (in the language of FO):

∀d (∃mdirected(d,m)→ ∃nDirector(d, n)) (foreign keys, inclusion or
∀m (∃ddirected(d,m)→ ∃tyMovie(m, t, y)) tuple-generating dependencies,
∀dn (EuropeanDirector(d, n)→ Director(d, n)) TGDs)
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Databases: Specifying Schema

an Entity-Relationship diagram

Director

ID

name

Movie

ID

title

year

EuropeanDirector

directed

ISA

integrity constraints or dependencies (in the language of FO):

∀d (∃mdirected(d,m)→ ∃nDirector(d, n)) (foreign keys, inclusion or
∀m (∃ddirected(d,m)→ ∃tyMovie(m, t, y)) tuple-generating dependencies,
∀dn (EuropeanDirector(d, n)→ Director(d, n)) TGDs)

∀dn1n2 (Director(d, n1) ∧ Director(d, n2)→ (n1 = n2)) (keys, functional
∀mt1t2y1y2 (Movie(m, t1, y1) ∧Movie(m, t2, y2)→ (t1 = t2)) or

equality-generating dependencies, EGDs)
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Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large
what is specified is true, everything else is false
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Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large
what is specified is true, everything else is false

data:
Director = { (0, ”peter”), (1, ”quentin”), (2, ”danny”) }
EuropeanDirector = { (0, ”peter”), (2, ”danny”) }
Movie = { (10, ”DC”), (11, ”TS”) }
directed = { (0, 10), (2, 11) }

query: q(n) = ∃dDirector(d, n)
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Databases: Data and the Closed World Assumption

data is completely specified (closed world assumption) and is typically large
what is specified is true, everything else is false

data:
Director = { (0, ”peter”), (1, ”quentin”), (2, ”danny”) }
EuropeanDirector = { (0, ”peter”), (2, ”danny”) }
Movie = { (10, ”DC”), (11, ”TS”) }
directed = { (0, 10), (2, 11) }

query: q(n) = ∃dDirector(d, n)

answer: { ”peter”, ”quentin”, ”danny” }

NB: not having (2, ”danny”) in Director would violate the integrity constraint
∀dn (EuropeanDirector(d, n)→ Director(d, n))
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Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃
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Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃

data D = FO interpretation ID (CWA) ~a is an answer to q(~x) iff ID |= q(~a)

Select-Project-Join (SPJ) = conjunctive queries (CQs):

database predicates + ∧ + ∃
database engines are optimised for CQs

Example: SELECT M.title, D.name
FROM Movie M, Directed MD, Director D
WHERE M.id = MD.movieId AND MD.directorId = D.id AND M.Year = 1982

SIGMOD 2015, Moscow, 28.05.15 8



Databases: Query Languages

SQL ≈ domain-independent FO queries:

database predicates + logical connectives ∨, ∧, ¬ + quantifiers ∀, ∃

data D = FO interpretation ID (CWA) ~a is an answer to q(~x) iff ID |= q(~a)

Select-Project-Join (SPJ) = conjunctive queries (CQs):

database predicates + ∧ + ∃
database engines are optimised for CQs

Example: SELECT M.title, D.name
FROM Movie M, Directed MD, Director D
WHERE M.id = MD.movieId AND MD.directorId = D.id AND M.Year = 1982

Datalog notation: q(~x)︸ ︷︷ ︸
head

← P1(~z1), . . . , Pk(~zk)︸ ︷︷ ︸
body

where each ~zi is a vector, which may contain answer variables ~x and
existentially quantified variables ~y (implicit)

Example: q(t, n)← Movie(m, t, 1982),directed(m,d),director(d, n)
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Why do Databases Work?

query answering problem (as a recognition problem):

given a finite data D, a query q(~x) and a tuple ~a,
decide whether ID |= q(~a)

ID makes the facts in D true (and only them)

what is the complexity of CQ answering?
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Why do Databases Work?

query answering problem (as a recognition problem):

given a finite data D, a query q(~x) and a tuple ~a,
decide whether ID |= q(~a)

ID makes the facts in D true (and only them)

what is the complexity of CQ answering?

naive algorithm:
guess values for all existential variables and then

evaluate the query in polynomial time in NP

can it be done better?
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Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’
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Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

D = {A(r, g), A(g, b), A(b, r), A(g, r), A(r, b), A(b, g)}
qG = ∃v1, . . . , vn

∧
(vi,vj)∈E

A(vi, vj)

b r

g

A

A A

D |= qG iff G is 3-colourable
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Why Do Databases Work? (2)

no, by reduction of the graph 3-colourability problem, which is NP-complete:
‘given an undirected graph G = (V,E),

decide whether it possible to colour it (using r, g, b)
so that no edge has the same colour at both ends?’

D = {A(r, g), A(g, b), A(b, r), A(g, r), A(r, b), A(b, g)}
qG = ∃v1, . . . , vn

∧
(vi,vj)∈E

A(vi, vj)

b r

g

A

A A

D |= qG iff G is 3-colourable

in fact, the query answering algorithm runs inO(|D||q|) data is large, query is short

data complexity: only data D are counted as input (q is constant)

(Vardi, 1982): query answering is in AC0 for data complexity
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Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3
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Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively
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Circuits and AC0

a circuit is an acyclic graph of AND-, OR- and NOT-gates
(with n inputs and a single output, sink)

p1
p2

g3

database instances D can be encoded on inputs
(one input for each possible ground atom)

FO-query is a circuit: ∧∧∧,∨∨∨ and¬¬¬ are AND-, OR- and NOT-gates, respectively
∀∀∀ and ∃∃∃ are AND- and OR-gates with unbounded fan-in

AC0 = circuits of constant depth with AND- and OR-nodes of unbounded fan-in

constant time by a polynomial number of processors (high degree of parallelism)

the depth of this circuit does not depend on D Vardi’s theorem

NB: AC0 is a proper subclass of LOGSPACE ⊆ P (PARITY does not belong to AC0)

given a word w, decide whether its length is even
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Part 2

Basics of Ontology Languages
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DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)
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DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= Pi︸︷︷︸
role name

| P−i
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DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= Pi︸︷︷︸
role name

| P−i

TBox T C1 v C2︸ ︷︷ ︸
SubClassOf(C1,C2)

and R1 v R2︸ ︷︷ ︸
SubObjectPropertyOf(R1,R2)

ABox A C(a) and R(a, b)
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DLs and OWL: Syntax

concepts (classes, sets of elements)

C ::= Ai︸︷︷︸
concept name

| >︸︷︷︸
owl:Thing

| ⊥︸︷︷︸
owl:Nothing

|

¬C︸︷︷︸
ObjectComplementOf(C)

| C1 u C2︸ ︷︷ ︸
ObjectIntersectionOf(C1,C2)

| C1 t C2︸ ︷︷ ︸
ObjectUnionOf(C1,C2)

|

∃R.C︸ ︷︷ ︸
ObjectSomeValuesFrom(R,C)

| ∀R.C︸ ︷︷ ︸
ObjectAllValuesFrom(R,C)

roles (object properties, binary relations)

R ::= Pi︸︷︷︸
role name

| P−i

TBox T C1 v C2︸ ︷︷ ︸
SubClassOf(C1,C2)

and R1 v R2︸ ︷︷ ︸
SubObjectPropertyOf(R1,R2)

ABox A C(a) and R(a, b)

knowledge base K = (T ,A) (ontology)
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DL Semantics

interpretation I = ( ∆I︸︷︷︸
domain

, ·I)

john
FirstYearStudent

kate
Student

sw
GraduateCourse sp1

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

∆I

·I (interpretation function)

individuals ai → elements aIi ∈ ∆I

concept names Ai → subsets AIi ⊆ ∆I

role names Pi → binary relations P Ii ⊆ ∆I ×∆I
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DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−
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DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

>I = ∆I and ⊥I = ∅
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DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

>I = ∆I and ⊥I = ∅

(¬C)I = ∆I \ CI
j s `
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DL Semantics (2)

(P−)I = {(v, u) | (u, v) ∈ P I}
j s

takesCourse

takesCourse−

>I = ∆I and ⊥I = ∅

(¬C)I = ∆I \ CI
j s `

(C1 u C2)
I = CI1 ∩ CI2

(C1 t C2)
I = CI1 ∪ CI2

j k b
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DL Semantics (3)

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
∃takesCourse.GraduateCourse

∃takesCourse.UndergraduateCourse

john kate
Student

sw
GraduateCourse

sp1
UndergraduateCourse

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

3RC or ∃y (R(x, y) ∧ C(y))
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DL Semantics (3)

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
∃takesCourse.GraduateCourse

∃takesCourse.UndergraduateCourse

john kate
Student

sw
GraduateCourse

sp1
UndergraduateCourse

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

3RC or ∃y (R(x, y) ∧ C(y))

(∀R.C)I =
{
u | v ∈ CI, for all v with (u, v) ∈ RI

}
∀R.C = ¬∃R.¬C
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DL Semantics (3)

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
∃takesCourse.GraduateCourse

∃takesCourse.UndergraduateCourse

john kate
Student

sw
GraduateCourse

sp1
UndergraduateCourse

ta
ke

sC
ourse

takesCourse ta
ke

sC
ourse

3RC or ∃y (R(x, y) ∧ C(y))

(∀R.C)I =
{
u | v ∈ CI, for all v with (u, v) ∈ RI

}
∀R.C = ¬∃R.¬C

NB. “for all” is true when there are no v with (u, v) ∈ RI

e.g., sp1 ∈ (∀takesCourse.UndergraduateCourse)I

sp1 ∈ (∀takesCourse.⊥)I
2RC or ∀y (R(x, y)→ C(y))
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DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2
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DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

I |= R1 v R2 ⇐⇒ RI1 ⊆ RI2
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DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

I |= R1 v R2 ⇐⇒ RI1 ⊆ RI2

I |= C(a) ⇐⇒ aI ∈ CI

I |= R(a, b) ⇐⇒ (aI, bI) ∈ RI
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DL Semantics (4)

I |= C1 v C2 ⇐⇒ CI1 ⊆ CI2
j k b

C1 C2

I |= R1 v R2 ⇐⇒ RI1 ⊆ RI2

I |= C(a) ⇐⇒ aI ∈ CI

I |= R(a, b) ⇐⇒ (aI, bI) ∈ RI

I is a model of (T ,A) if I |= α, for all inclusions α in T
and assertions α in A
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Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }
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Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

john
j

GraduateStudent
Student

s
GraduateCourse

takesCourse

∆I1
johnI1 = j
GraduateStudentI1 = {j}
StudentI1 = {j}
GraduateCourseI1 = {s}
takesCourseI1 = {(j, s)}

is a model of (T , A)
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Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

john
j

GraduateStudent
Student

s
GraduateCourse

takesCourse

∆I1
johnI1 = j
GraduateStudentI1 = {j}
StudentI1 = {j}
GraduateCourseI1 = {s}
takesCourseI1 = {(j, s)}

is a model of (T , A)

john
a

GraduateStudent
Student

GraduateCourse
takesCourse

∆I2
johnI2 = a
GraduateStudentI2 = {a}
StudentI2 = {a}
GraduateCourseI2 = {a}
takesCourseI2 = {(a, a)}

is a model of (T , A)
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Open World Assumption

T = { GraduateStudent v Student
GraduateStudent v ∃takesCourse.GraduateCourse }

A = { GraduateStudent(john) }

john
j

GraduateStudent
Student

s
GraduateCourse

takesCourse

∆I1
johnI1 = j
GraduateStudentI1 = {j}
StudentI1 = {j}
GraduateCourseI1 = {s}
takesCourseI1 = {(j, s)}

is a model of (T , A)

john
a

GraduateStudent
Student

GraduateCourse
takesCourse

∆I2
johnI2 = a
GraduateStudentI2 = {a}
StudentI2 = {a}
GraduateCourseI2 = {a}
takesCourseI2 = {(a, a)}

is a model of (T , A)

john
j

GraduateStudent
Student

∆I3
johnI3 = j
GraduateStudentI3 = {j}
StudentI3 = {j}
GraduateCourseI3 = ∅
takesCourseI3 = ∅

is not a model of (T , A)
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Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of K

(in other words, K implies no contradictions)
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Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of K

(in other words, K implies no contradictions)

Example

T :
UndergraduateStudent v ∀takesCourse.UndergraduateCourse
UndergraduateCourse uGraduateCourse v ⊥

A:
UndergraduateStudent(john)

takesCourse(john, sw)

GraduateCourse(sw)
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Reasoning: Consistency

a knowledge base K is satisfiable (or consistent)
if there exists at least one model of K

(in other words, K implies no contradictions)

Example

T :
UndergraduateStudent v ∀takesCourse.UndergraduateCourse
UndergraduateCourse uGraduateCourse v ⊥

A:
UndergraduateStudent(john)

takesCourse(john, sw)

GraduateCourse(sw)

(T ,A) is inconsistent:
John (as an undergraduate student) can take only undergraduate courses.
We know, however, that he takes a graduate course,

which cannot be an undergraduate one.
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Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)
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Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)

T : ∀takesCourse.UndergraduateCourse v UndergraduateStudent
FirstYearStudent v ∃takesCourse.UndergraduateCourse.
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Reasoning: Entailment

C1 v C2 is entailed by K K |= C1 v C2

if I |= C1 v C2 for all models I of K
(entailment for role inclusions and concept and role assertions is defined similarly)

T : ∀takesCourse.UndergraduateCourse v UndergraduateStudent
FirstYearStudent v ∃takesCourse.UndergraduateCourse.

j

FirstYearStudent
UndergraduateStudent

s
UndergraduateCourse
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ke
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urse

I1

I1 |= T
I1 |= FirstYearStudent v

UndergraduateStudent
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I1

I1 |= T
I1 |= FirstYearStudent v

UndergraduateStudent

j
FirstYearStudent
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takesCourse

I2

I2 |= T
I2 |= FirstYearStudent 6v

UndergraduateStudent
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Certain Answers to CQs

q(~x) = ∃~y ϕ(~x, ~y) is a CQ with ~x = (x1, . . . , xn)

~a = (a1, . . . , an) is a tuple of individual names from A

q(~a) is the result of replacing each xi in ∃~y ϕ(~x, ~y) with ai
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Certain Answers to CQs

q(~x) = ∃~y ϕ(~x, ~y) is a CQ with ~x = (x1, . . . , xn)

~a = (a1, . . . , an) is a tuple of individual names from A

q(~a) is the result of replacing each xi in ∃~y ϕ(~x, ~y) with ai

~a is a certain answer to q(~x) over T ,A (T ,A) |= q(~a)

if, for any model I of (T ,A), the sentence q(~a) is true in I
I |= q(~a)
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Andrea’s Example (Schaerf, 1993)

T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)
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T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)
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Andrea’s Example (Schaerf, 1993)

T : > v Male t Female, Male u Female v ⊥

A: friend(john, susan), friend(john, andrea), Female(susan)

loves(susan, andrea), loves(andrea, bill), Male(bill)

q = ∃y, z
(
friend(john, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)

)

A

john

andrea
Female

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

A

john

andrea
Male

susan
Female

bill Male

frie
nd friend

loves

lo
ve

s

NB: the same as checking whether john is an instance of ∃friend.(Female u ∃loves.Male)
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DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2
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DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

S – ALC + transitive roles

N – unqualified number restrictions ≥ q R.>

O – nominals {a}

SHOIN ≈ OWL 1.0

Q – qualified number restrictions ≥ q R.C
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DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

S – ALC + transitive roles

N – unqualified number restrictions ≥ q R.>

O – nominals {a}

SHOIN ≈ OWL 1.0

Q – qualified number restrictions ≥ q R.C

F – functionality constraints ≥ 2R.> v ⊥

SHIF ≈ OWL Lite
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DL Zoo

ALCHI

AL – attributive language

C – complement ¬C (ALC is multi-modal Km)

I – role inverses P−

H – role inclusions R1 v R2

S – ALC + transitive roles

N – unqualified number restrictions ≥ q R.>

O – nominals {a}

SHOIN ≈ OWL 1.0

Q – qualified number restrictions ≥ q R.C

F – functionality constraints ≥ 2R.> v ⊥

SHIF ≈ OWL Lite

R – role chains and ∃R.Self

SROIQ ≈ OWL 2
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Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs
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Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs
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and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

CQ entailment over ALCHI KBs is 2ExpTime-complete

CQ entailment over SROIQ is not even known to be decidable
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Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

CQ entailment over ALCHI KBs is 2ExpTime-complete

CQ entailment over SROIQ is not even known to be decidable

DL Complexity Navigator : www.cs.man.ac.uk/~ezolin/dl
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Complexity of Reasoning

The satisfiability problem is ExpTime-complete for ALCHI KBs
and N2ExpTime-complete for SROIQ KBs

Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs

CQ entailment over ALCHI KBs is 2ExpTime-complete

CQ entailment over SROIQ is not even known to be decidable

DL Complexity Navigator : www.cs.man.ac.uk/~ezolin/dl

practical reasoners for OWL 2 DL: FaCT++, HermiT, Pellet
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Part 3

Conjunctive Query Rewriting
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Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

TBox T

+
union of

conjunctive
queries q′

ABox A ABox A

AC0
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Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

TBox T

+
union of

conjunctive
queries q′

ABox A ABox A

AC0

given a CQ q(~x) over T , rewrite q(~x) into an FO query q′(~x) such that

for all A and ~a, T ,A |= q(~a) iff A |= q′(~a)
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Query Rewriting Approach

(Calvanese et al. 2008): use off-the-shelf RDBMS

conjunctive
query q

TBox T

+
union of

conjunctive
queries q′

ABox A ABox A

AC0

given a CQ q(~x) over T , rewrite q(~x) into an FO query q′(~x) such that

for all A and ~a, T ,A |= q(~a) iff A |= q′(~a)

FO-rewritability: only possible in DL with query answering in FO (=AC0)
for data complexity:

OWL 2 QL
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W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R ::= Pi | P−i

basic concepts B ::= ⊥ | Ai | ∃R

concepts C ::= B | ∃R.B
(∃R is an abbreviation for ∃R.>)

a TBox T is a finite set of axioms of the form

B v C, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ak(ai) and Pk(ai, aj)

(plus inequality constraints ai 6= aj for i 6= j)
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OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R ::= Pi | P−i

basic concepts B ::= ⊥ | Ai | ∃R

concepts C ::= B | ∃R.B
(∃R is an abbreviation for ∃R.>)

a TBox T is a finite set of axioms of the form

B v C, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ak(ai) and Pk(ai, aj)

(plus inequality constraints ai 6= aj for i 6= j)

NB. axioms B′ v ∃R.B are ‘syntactic sugar’
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W3C Standard OWL 2 QL

OWL 2 QL is a profile of OWL 2 designed with the aim of OBDA
(and based on the DL-Lite family of DLs)

roles R ::= Pi | P−i

basic concepts B ::= ⊥ | Ai | ∃R

concepts C ::= B | ∃R.B
(∃R is an abbreviation for ∃R.>)

a TBox T is a finite set of axioms of the form

B v C, R1 v R2, B1 uB2 v ⊥, R1 uR2 v ⊥
(plus reflexivity/irreflexivity assertions for roles)

an ABox A s a finite set of atoms the form Ak(ai) and Pk(ai, aj)

(plus inequality constraints ai 6= aj for i 6= j)

NB. axioms B′ v ∃R.B are ‘syntactic sugar’ B′ v ∃RR.B , ∃R−B v B, RB v R
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Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }
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Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }
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CQ: q ← ReachableFromTarget(s)

(T ,AG,t) |= q iff there is a path from s to t in G
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Can We Use ∃R.A v B in QL?

reachability problem for directed graphs is NLogSpace-complete:

‘given a directed graph G = (V,E) and s, t ∈ V , decide whether
there is a directed path from s to t in G’

ABox: AG,t = {edge(v1, v2) | (v1, v2) ∈ E } ∪ {ReachableFromTarget(t)}

TBox: T = { ∃edge.ReachableFromTarget v ReachableFromTarget }
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CQ: q ← ReachableFromTarget(s)

(T ,AG,t) |= q iff there is a path from s to t in G

T and q do not depend on G, s, t

‘(T ,AG,t) |= q?’ is NLogSpace-hard for data complexity

q and T are not FO-rewritable
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Can We Use A v B t C in QL?

graph 3-colouring problem is NP-complete:

‘given a graph G = (V,E), decide whether its vertices can be painted

in one of three colours so that no adjacent vertices have the same colour’

represent G as the ABox AG = {R(v1, v2) | {v1, v2} ∈ E }

3-colouring is encoded by the TBox T with the axioms

> v C1 t C2 t C3, Ci u Cj v ⊥, Ci u ∃R.Ci v B, 1 ≤ i ≤ 3

SIGMOD 2015, Moscow, 28.05.15 29



Can We Use A v B t C in QL?

graph 3-colouring problem is NP-complete:

‘given a graph G = (V,E), decide whether its vertices can be painted

in one of three colours so that no adjacent vertices have the same colour’

represent G as the ABox AG = {R(v1, v2) | {v1, v2} ∈ E }

3-colouring is encoded by the TBox T with the axioms

> v C1 t C2 t C3, Ci u Cj v ⊥, Ci u ∃R.Ci v B, 1 ≤ i ≤ 3

consider CQ q ← B(y)

(T ,AG) 6|= q iff G is 3-colourable

T and q do not depend on G

‘(T ,AG) |= q?’ is coNP-hard for data complexity

q and T are not FO-rewritable

SIGMOD 2015, Moscow, 28.05.15 29



OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
. . . . . .
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OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
. . . . . .

TGDs: ∀~x∀~y
(
ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

)
ϕ and ψ are conjunctions of predicate atoms
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OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
. . . . . .

TGDs: ∀~x∀~y
(
ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

)
ϕ and ψ are conjunctions of predicate atoms

linear TGDs: ϕ and ψ are atoms (all OWL 2 QL axioms are linear)

Cal̀ı, Gottlob & Pieris, 2010: sets of sticky TGDs are FO-rewritable
in particular, linear TGDs
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OWL 2 QL as TGDs
(aka Datalog± aka existential rules)

concept inclusion tuple-generating dependency

PhDStudent v Student ≈ ∀x
(
PhDStudent(x)→ Student(x)

)
Student v ∃HasTutor ≈ ∀x

(
Student(x)→ ∃y HasTutor(x, y)

)
. . . . . .

TGDs: ∀~x∀~y
(
ϕ(~x, ~y)→ ∃~z ψ(~x, ~z)

)
ϕ and ψ are conjunctions of predicate atoms

linear TGDs: ϕ and ψ are atoms (all OWL 2 QL axioms are linear)

Cal̀ı, Gottlob & Pieris, 2010: sets of sticky TGDs are FO-rewritable
in particular, linear TGDs

NB: these TGDs are used with the open world assumption (for enriching data)

TGDs in DBs are used with the closed world assumption (integrity constraints)
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Practical Query Answering in OWL 2 QL

systems
– QuOnto (Rome, 2005)
– REQUIEM (Oxford, 2009) / Stardog (Washington, DC, 2011)
– Presto (Rome, 2010)
– IQAROS (Athens, 2011)
– Rapid (Athens-Oxford, 2011)
– Nyaya (Milan-Oxford, 2010) for TGDs
– Clipper (Vienna, 2012) for Horn-SHIQ
– kyrie (Madrid, 2013)
– Pure (Montpellier, 2013) for TGDs
– Quest/ontop (Bolzano, 2011)
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Practical Query Answering in OWL 2 QL

systems
– QuOnto (Rome, 2005)
– REQUIEM (Oxford, 2009) / Stardog (Washington, DC, 2011)
– Presto (Rome, 2010)
– IQAROS (Athens, 2011)
– Rapid (Athens-Oxford, 2011)
– Nyaya (Milan-Oxford, 2010) for TGDs
– Clipper (Vienna, 2012) for Horn-SHIQ
– kyrie (Madrid, 2013)
– Pure (Montpellier, 2013) for TGDs
– Quest/ontop (Bolzano, 2011)

not so smoothly: the size of implemented rewritings q′ is O
(
(|q| · |T |)|q|

)
(can’t say ‘query is small or fixed’ any longer)
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Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)
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Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .
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Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

PE-rewritings (positive existential queries ≈ select-project-join-union) ∃ ∨ ∧
grandparent(x, z)← (parent(x, y) ∨ father(x, y) ∨mother(x, y)) ∧

(parent(y, z) ∨ father(y, z) ∨mother(y, z))
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Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

PE-rewritings (positive existential queries ≈ select-project-join-union) ∃ ∨ ∧
grandparent(x, z)← (parent(x, y) ∨ father(x, y) ∨mother(x, y)) ∧

(parent(y, z) ∨ father(y, z) ∨mother(y, z))

NDL-rewriting (non-recursive Datalog ≈ SQL with views) ∃ ∨ ∧ + structure sharing

grandparent(x, z)← ext-parent(x, y) ∧ ext-parent(y, z)
ext-parent(x, y)← parent(x, y)
ext-parent(x, y)← father(x, y)
ext-parent(x, y)← mother(x, y)
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Does a Rewriting Have to be Exponential?

TBox mother v parent and father v parent

query grandparent(x, z)← parent(x, y) ∧ parent(y, z)

UCQ-rewritings (unions of CQs) are exponential in the worst case
grandparent(x, z)← parent(x, y) ∧ parent(y, z)
grandparent(x, z)← father(x, y) ∧ father(y, z)
grandparent(x, z)← mother(x, y) ∧ father(y, z)
. . .

PE-rewritings (positive existential queries ≈ select-project-join-union) ∃ ∨ ∧
grandparent(x, z)← (parent(x, y) ∨ father(x, y) ∨mother(x, y)) ∧

(parent(y, z) ∨ father(y, z) ∨mother(y, z))

NDL-rewriting (non-recursive Datalog ≈ SQL with views) ∃ ∨ ∧ + structure sharing

grandparent(x, z)← ext-parent(x, y) ∧ ext-parent(y, z)
ext-parent(x, y)← parent(x, y)
ext-parent(x, y)← father(x, y)
ext-parent(x, y)← mother(x, y)

FO-rewriting (first-order queries ≈ SQL) ∃ ∀ ∨ ∧ ¬
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Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B′ v ∃R.B

≈ RDF Schema
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Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B′ v ∃R.B

≈ RDF Schema

q(~x) and a flat T qext(~x) by replacing

A(u)
∨

T |=A′vA

A′(u) ∨
∨

T |=∃RvA

∃v R(u, v)

P (u, v)
∨

T |=RvP

R(u, v)

for any CQ q(~x) and any flat OWL 2 QL TBox T ,

qext(~x) is a PE-rewriting of q and T of size O(|q| · |T |)
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Case 1: Flat QL TBoxes

a TBox T is flat if it does not contain generating axioms B′ v ∃R.B

≈ RDF Schema

q(~x) and a flat T qext(~x) by replacing

A(u)
∨

T |=A′vA

A′(u) ∨
∨

T |=∃RvA

∃v R(u, v)

P (u, v)
∨

T |=RvP

R(u, v)

for any CQ q(~x) and any flat OWL 2 QL TBox T ,

qext(~x) is a PE-rewriting of q and T of size O(|q| · |T |)

easy in theory, not so in practice
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Who Works with Professors?

TBox:

worksOn− v involves

isManagedBy v involves

in English: find those who work with professors

query: q(x) ← worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)
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Who Works with Professors?

TBox:

worksOn− v involves

isManagedBy v involves

in English: find those who work with professors

query: q(x) ← worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)

worksOn(z, y) ∨ isManagedBy(y, z) ∨ involves(y, z)
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Rewriting over H-complete ABoxes

an ABox A is H-complete with respect to T if

• A(a) ∈ A whenever A′(a) ∈ A and T |= A′ v A

• A(a) ∈ A whenever R(a, b) ∈ A and T |= ∃R v A

• P (a, b) ∈ A whenever R(a, b) ∈ A and T |= R v P
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Rewriting over H-complete ABoxes

an ABox A is H-complete with respect to T if

• A(a) ∈ A whenever A′(a) ∈ A and T |= A′ v A

• A(a) ∈ A whenever R(a, b) ∈ A and T |= ∃R v A

• P (a, b) ∈ A whenever R(a, b) ∈ A and T |= R v P

an FO-query q′(~x) is an FO-rewriting of q(~x) and T over H-complete ABoxes if,

for any H-complete (w.r.t. T ) ABox A and any ~a,

(T ,A) |= q(~a) iff A |= q′(~a)

(thus we ignore the axioms considered in the flat rewriting)
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Case 2: Who Works with Professors (2)?

T :
RA v ∃worksOn.Project worksOn− v involves

Project v ∃isManagedBy.Prof isManagedBy v involves

A: RA(chris), worksOn(chris, dyn), Project(dyn), Lecturer(dave),

worksOn(dave, dyn)

A
RA

chris

Project chrisw1

w
o

rk
sO

n

in
vo

lv
e

s−
Prof

chrisw1w2
in

vo
lv

e
s

isM
a

n
a

g
e

d
By

Project

dyn

Prof
dynw2

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

involves−

worksOn

Lecturer

dave
involves−

worksOn

w1 = w∃worksOn.Project
w2 = w∃isManagedBy.Prof
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Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1
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Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2
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Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

RA(x) ∧ Professor(z) ∧ (x = z)

RA
Professor

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h3

h3

h
3

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

(x and z are the roots of the tree witness)
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Case 2: Rewriting the Labelled Nulls

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

q(x)

x

y

w
o

rk
sO

n

Professor
z

in
vo

lv
e

s

RA(x)

RA

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h1

h1

h1

RA(x) ∧ Professor(z) ∧ (x = z)

RA
Professor

Project

w
o

rk
sO

n

in
vo

lv
e

s−

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h3

h3

h
3

worksOn(x, y) ∧ Project(y)

Project

Professor

in
vo

lv
e

s

isM
a

n
a

g
e

d
By

h
2

h
2

(x and z are the roots of the tree witness)
PE-rewriting (over H-complete ABoxes):
q′(x) ← RA(x) ∨

(
worksOn(x, y) ∧ Project(y)

)
∨(

RA(x) ∧ Professor(z) ∧ (x = z)
)
∨(

worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)
)
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Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P
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Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R
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Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, x)

T

∃z R(x, z)

P
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Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, x)

T

∃z R(x, z)

PA(x) ∧ (x = x′)

B(y′′) ∧ (y′ = y′′)

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

A

R

T

B

R
−

P
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Tree-Witness Rewriting

TBox T : A v ∃R, ∃R− v ∃T, B v ∃R−, ∃R v ∃S

A

R

T

B

R
−

P

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

∃z R(z, x)

T

∃z R(x, z)

PA(x) ∧ (x = x′)

B(y′′) ∧ (y′ = y′′)

∃z R(z, y) ∧ (y = y′)

∃xR(x′, z) ∧ (x′ = x′′)

x

y y′

x′ x′′

y′′

R

T

T

R

P
P

R

A

R

T

B

R
−

P

qtw(~x) =
∨

Θ independent set
of tree witnesses

∃~y
( ∧
S(~z)∈q\qΘ

S(~z) ∧
∧
t∈Θ

twt

)
(Kikot, K & Zakharyaschev, 2012)
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Rewritings as Boolean Functions

hypergraphH :
vertices = atoms of the query
hyperedges = tree witnesses

R(x, y)

T (y, z) T (y′, z)

R(x′, y′)

S(x′, z′)S(x′′, z′)

R(x′′, y′′)

SIGMOD 2015, Moscow, 28.05.15 39



Rewritings as Boolean Functions

hypergraphH :
vertices = atoms of the query
hyperedges = tree witnesses

R(x, y)

T (y, z) T (y′, z)

R(x′, y′)

S(x′, z′)S(x′′, z′)

R(x′′, y′′)

hypergraph function of H = (V,E):

fH =
∨
X⊆E

X independent

( ∧
v∈V \VX

pv ∧
∧
e∈X

pe

)
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Rewritings as Boolean Functions

hypergraphH :
vertices = atoms of the query
hyperedges = tree witnesses

R(x, y)

T (y, z) T (y′, z)

R(x′, y′)

S(x′, z′)S(x′′, z′)

R(x′′, y′′)

hypergraph function of H = (V,E):

fH =
∨
X⊆E

X independent

( ∧
v∈V \VX

pv ∧
∧
e∈X

pe

)

(Kikot, K, Podolskii & Zakharyaschev, 2012) lower bounds from
circuit complexity

exponential non-recursive datalog (and positive existential) rewritings
superpolynomial first-order rewritings (unless NP ⊆ P/poly)
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Short Rewritings in Theory

if qt1 ∩ qt2 = ∅ or qt1 ⊆ qt2 or qt2 ⊆ qt1 , for each pair t1 and t2︸ ︷︷ ︸
compatible

, then

q′tw(~x) =
∧

S(~z)∈q

(
S(~z) ∨

∨
t : S(~z)∈qt

twt

)
is a rewriting (over H-complete ABoxes)
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Short Rewritings in Theory

if qt1 ∩ qt2 = ∅ or qt1 ⊆ qt2 or qt2 ⊆ qt1 , for each pair t1 and t2︸ ︷︷ ︸
compatible

, then

q′tw(~x) =
∧

S(~z)∈q

(
S(~z) ∨

∨
t : S(~z)∈qt

twt

)
is a rewriting (over H-complete ABoxes)

QL: replace S(~z) with
∨

T |=S′vS

S′(~z)

=⇒ polynomial positive existential rewriting
provided that the number of tree witnesses is polynomial and they are compatible

not the case in general!
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Part 4

Practical OBDA with Ontop
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OBDA system Ontop

http://ontop.inf.unibz.it

– implemented at the Free University of Bozen-Bolzano
(Mariano Rodŕıguez-Muro, Martin Rezk, Guohui Xiao)

– open-source

– available as a plugin for Protégé 4 & 5, SPARQL end-point,
OWL API and Sesame libraries
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OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

SIGMOD 2015, Moscow, 28.05.15 43



OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Why SQL rewritings are large:

(1) a large number of tree witnesses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) multiple definitions of the ontology terms in R2RML mappingsM
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OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Why SQL rewritings are large:

(1) a large number of tree witnesses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) multiple definitions of the ontology terms in R2RML mappingsM

very few for real-world CQs/ontologies
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OBDA with Databases

SPARQL query q

TBox T

FO-query q′

R2RML mappingsM

SQL

data Dvirtual ABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Why SQL rewritings are large:

(1) a large number of tree witnesses

(2) large concept/role hierarchies in OWL 2 QL ontology T

(3) multiple definitions of the ontology terms in R2RML mappingsM

very few for real-world CQs/ontologies

many inclusions in T follow from Σ andM
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Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

– database title
movie ID title production year

728 ‘Django Unchained’ 2012
. . . . . . . . .

castinfo
person ID movie ID person role

n37 728 1
n38 728 1
. . . . . . . . .

– dependencies

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(FK)

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)
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Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

– database title
movie ID title production year

728 ‘Django Unchained’ 2012
. . . . . . . . .

castinfo
person ID movie ID person role

n37 728 1
n38 728 1
. . . . . . . . .

– dependencies

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(FK)

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

Movie Ontology MO http://www.movieontology.org

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person, . . .
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Ontop Example

IMDb (simplified): http://www.imdb.com/interfaces

– database title
movie ID title production year

728 ‘Django Unchained’ 2012
. . . . . . . . .

castinfo
person ID movie ID person role

n37 728 1
n38 728 1
. . . . . . . . .

– dependencies

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
(FK)

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

Movie Ontology MO http://www.movieontology.org

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person, . . .

Mappings (created by the Ontop development team)

mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)
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Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining
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Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
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Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

M
mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)
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mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

M
mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)

MT mo:Movie(m)← title(m, t, y) by (M1)
mo:Movie(m)← castinfo(p,m, r) by (M2) + ∃mo:cast v mo:Movie
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Ontop: T-mappings

flat TBox T

data D

ABox A
H-complete ABox A′

mappingM
T -mappingMT

+

composition

+virtualisation

+ virtualisation

+

forward chaining

T
mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,
mo:Movie ≡ ∃mo:cast, ∃mo:cast − v mo:Person

M
mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y) (M1)
mo:cast(m, p),mo:Person(p)← castinfo(p,m, r) (M2)

MT mo:Movie(m)← title(m, t, y) by (M1)
mo:Movie(m)← castinfo(p,m, r) by (M2) + ∃mo:cast v mo:Movie

redundant by (FK)
∀m

(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
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Optimising T-mappings

• using foreign keys (inclusion dependencies)
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Optimising T-mappings

• using foreign keys (inclusion dependencies)

• using disjunction

T
mo:Actor v mo:Artist, mo:Artist v mo:Person,
mo:Director v mo:Person, mo:Editor v mo:Person, . . .

M
mo:Actor(p)← castinfo(p,m, r), (r = 1) (M1)
. . .
mo:Editor(p)← castinfo(p,m, r), (r = 6) (M6)
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Optimising T-mappings

• using foreign keys (inclusion dependencies)

• using disjunction

T
mo:Actor v mo:Artist, mo:Artist v mo:Person,
mo:Director v mo:Person, mo:Editor v mo:Person, . . .

M
mo:Actor(p)← castinfo(p,m, r), (r = 1) (M1)
. . .
mo:Editor(p)← castinfo(p,m, r), (r = 6) (M6)

MT mo:Person(p)← castinfo(p,m, r), ((r = 1) ∨ · · · ∨ (r = 6))
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Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)
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Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)
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Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)
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mo:Movie(m)← title(m, t, y) (M1)
mo:title(m, t)← title(m, t, y) (M2)
mo:year(m, y)← title(m, t, y) (M3)
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Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

M
mo:Movie(m)← title(m, t, y) (M1)
mo:title(m, t)← title(m, t, y) (M2)
mo:year(m, y)← title(m, t, y) (M3)

Unfolding

q∗(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010)
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Unfolding with Semantic Query Optimisation

Query

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

Rewriting

q′(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010)

M
mo:Movie(m)← title(m, t, y) (M1)
mo:title(m, t)← title(m, t, y) (M2)
mo:year(m, y)← title(m, t, y) (M3)

Unfolding

q∗(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010)

primary
keys

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
(PK1)

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(PK2)

Semantic Query Optimisation

q†(t, y)← title(m, t, y), (y > 2010)

SIGMOD 2015, Moscow, 28.05.15 47



Practical OBDA with Ontop

CQ q

ontology T

UCQ qtw

T -mappingmappingM

dependencies Σ

SQL

data D

virtual ABox

H-complete ABox A

+

tw-rewriting Ê

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

H-completion

+

composition Ë

SQO
Ì

SQ
O

Í

Ê tree-witness rewriting qtw over H-complete ABoxes (no concept/role hierarchies)

Ë T -mapping = system mappingM+ T makes virtual ABoxes H-complete

Ì T -mapping is simplified using SQO and SQL features

constructed and optimised for T and Σ only once

Í unfolding uses SQO to produce small and efficient SQL queries
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