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Нервная система до нейробиологии

Рис.: 17 век, Рене Декарт о нервной системе: «Раздражение ступни
передаётся по нервам в мозг, взаимодействует там с духом и таким
образом порождает ощущение боли».
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Нервная система в современном понимании

I В 1906 году врач и гистолог Сантьяго Рамон-и-Кахаль
совместно с врачем Камилло Гольджи получают нобелевскую
премию за "за работы по структуре нервной системы"; их
работы заложили основы нейронной теории нервной системы и
современной нейробиологии.

Рис.: Блок-схема нервной системы1

1Neural Networks and Learning Machines (3rd Edition), Simon O. Haykin
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Схема биологического нейрона
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Модель МакКаллока-Питтса (1943 год)

I a (x) = θ
(∑n

j=1 wj · xi − w0

)
;

I θ (z) = [z ≥ 0] =
{

0,z<0
1,z≥0 - функция Хевисайда;

I эквивалентно линейному классификатору.

Данная модель, с незначительными изменениями, актуальна и по
сей день.

5 / 90



Нейронные ансамбли

I Физиолог и нейропсихолог Дональд Хебб разработал теорию
взаимосвязи головного мозга и мыслительных процессов в
книге "The Organization of Behavior"(1949).

I Нейронный ансамбль - совокупность нейронов, составляющих
функциональную группу в высших отделах мозга.

I Нейроансамбль - распределенный способ кодирования
информации.

I Нейрон сам по себе генерирует по мимо сигнала еще и шум, но
ансамбль в среднем генерирует чистый сигнал (аналогии с
bagging).
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Правила Хебба (1949)

В своей книге Дональд Хебб описал процесс адаптирования
нейронов в мозге в процессе обучения, и сформулировал базовые
механизмы нейропластичности:
1. если два нейрона по разные стороны от синапсов активируются

синхронно, то "вес"синапса слегка возрастает;
2. если два нейрона по разные стороны от синапсов активируются

асинхронно, то "вес"синапса слегка ослабевает или синапс
удаляется2.

Эти правила легли в основу зарождающейся теории нейросетей,
сегодня в мы можем увидеть этот мета-алгоритм в основных
методах обучения нейронных сетей.

2это расширенное правило, в оригинале второй части не было
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Однослойный персептрон Розенблатта (1958 год)

Нейрофизиолог Френк Розенблатт предложил схему устройства,
моделирующего процесс человеческого восприятия, и назвал его
"персептроном". По мимо этого:

I показал, что персептрон может выполнять базовые логические
операции;

I разработал алгоритм обучения такой модели - метод коррекции
ошибки;

I доказал сходимость алгоритма (теорема сходимости
персептрона), но только для линейно разделимых классов;

I реализовал физический прототип такой модели;
I реализовал первый в мире нейрокомпьютер "MARK-1".
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Нейрокомпьютер MARK-1 и Френк Розенблатт
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Элементарный персептрон

Метод коррекции ошибки
I ŷi = 0 ∧ yi = 1⇒ ∆w = η(n) · x(n)

I ŷi = 1 ∧ yi = 0⇒ ∆w = −η(n) · x(n)
I η(n) - скорость обучения, зависящая от итерации
I x(n) - входной образ на итерации n
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Недостатки элементарного персептрона, AND
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Недостатки элементарного персептрона, XOR

12 / 90



Анимация сходимости для операций AND и XOR

I операция OR - 1layer-net-or.gif
I операция AND - 1layer-net-and1.gif
I операция XOR - 1layer-net-xor.gif 3

3http://theclevermachine.wordpress.com/2014/09/11/a-gentle-introduction-to-
artificial-neural-networks/
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Доказательства неэффективности нейронных сетей

I В 1969 году математик и исследователь ИИ Марвин Минский
провел детальный математический анализ персептрона и
опубликовал формальное доказательство ограниченности этой
модели.

I "There is no reason to suppose that any of these virtues carry
over to the many-layered version. Nevertheless, we consider it to be
an important research problem to elucidate (or reject) our intuitive
judgement that the extension to multilayer systems is sterile."4

I Отсутствие преимуществ + ограничения модели в итоге
поубавили интерес научного сообщества к нейронным сетям,
требовалось, что то принципиально новое

4Персептроны, Марвин Минский в соавторстве с Сеймуром Папертом, MIT
Press, 1969
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Период "забвения"

Исследования искусственных нейросетей не спеша продолжаются, но
в режиме поиска чего-то нового:

I 1972: Т. Кохонен разрабатывает новый тип нейросетей,
способных функционировать в качестве памяти;

I 1975-1980: К. Фукусима разрабатывает когнитрон и
неокогнитрон, совершенно новый тип многослойной сверточной
сети, созданной по аналогии со строением зрительной системы;

I 1982: Дж. Хопфилд разрабатывает новый тип нейросети с
обратными связями, выполняющей функции ассоциативной
памяти;

I 1986: Дэвид Румельхарт, Дж. Хинтон и Рональд Вильямс
разрабатывают вычислительно эффективный алгоритм
обучения многослойных нейросетей - метод обратного
распространения ошибки (именно работа этих авторов
возрождает интерес к нейронным сетям в мире).
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Теорема универсальной аппроксимации5

Введем следующие обозначения:
I φ(x) - не тождественная, ограниченная и монотонно

возрастающая функция
I In - n-мерный единичный гиперкуб
I C (In) - множество непрерывных функций на In

⇒ ∀f ∧ ∀ε > 0∃
I m ∈ N
I {βi}i=1...m ,∀βi ∈ R
I {αi}i=1...m ,∀αi ∈ R
I {wij}j=1...n,i=1...m ,∀wij ∈ R

∧∃F (x1, . . . , xn) =
∑m

i=1 αiφ
(∑n

j=1 wij · xj + βi

)
:

I |F (x1, . . . , xn)− f (x1, . . . , xn)| < ε

5Neural Networks and Learning Machines (3rd Edition), Simon O. Haykin
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Универсальный аппроксиматор
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Демонстрация сходимости нейросети с одним скрытым
слоем

I операция XOR - 2layer-net-xor.gif
I бинарная классификация - 2layer-net-ring.gif
I аппроксимация функции sin - 2layer-net-regression-sine.gif
I аппроксимация функции abs - 2layer-net-regression-abs.gif6

6http://theclevermachine.wordpress.com/2014/09/11/a-gentle-introduction-to-
artificial-neural-networks/
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Многоснойная нейронная сеть прямого распространения

Рис.: Архитектура сети с двумя скрытыми слоями7

7Neural Networks and Learning Machines (3rd Edition), Simon O. Haykin
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Отличие персептрона Румельхарта от персептрона
Розенблатта

I Нелинейная функция активации;
I один и более скрытых слоев (до работ Хинтона по ограниченной

машине Больцмана, на практике не использовали более двух
скрытых слоев, а чаще всего один);

I сигналы на входе и на выходе не обязательно бинарные;
I произвольная архитектура сети;
I ошибка сети интерпретирует в смысле некоторой меры, а не как

число неправильных образов в режиме обучения.
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Модифицированная модель нейрона МакКаллока-Питтса

Рис.: Схема искусственного нейрона8

8Neural Networks and Learning Machines (3rd Edition), Simon O. Haykin
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Функция активации
Задача функции активации - ограничить амплитуду выходного
значения нейрона; чаще всего для этого используется одна из
сигмоидальных (S-образных) функций:

I логистическая функция: f (z) =
1

1 + e−a·z
,∀a ∈ R

I гиперболический тангенс: f (z) =
ea·x − e−a·x

ea·x + e−a·x
,∀a ∈ R

Рис.: Логистический сигмоид
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Backprop, обозначения #1

z
(n)
j = b

(n)
j +

Nn−1∑
i=1

w
(n)
ij x

(n)
i =

Nn−1∑
i=0

w
(n)
ij x

(n)
i (1)

y
(n)
k = f

(n)
k

(
z
(n)
k

)
(2)

Рис.: Схема передачи сигнала между слоями
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Backprop, обозначения #2

Обучение с учителем:
I дан набор данных

D =
{

(x1, t1) , (x2, t2) , . . . ,
(
x|D|, t|D|

)}
, xi ∈ RNinput , yi ∈ RNoutput

I необходимо построить такое отображение (нейросеть)
fnetwork : X → Y , которое минимизирует некоторый
функционал ошибки E : RNoutput × RNoutput → R, например

I Евклидово расстояние для задачи регрессии
I логарифм функции правдоподобия многомерного распределения

Бернулли для задачи классификации среди пересекающихся
классов

I кросс-энтропия для задачи классификации среди
непересекающихся классов
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Градиентный спуск, #1

Алгоритм backprop - это модификация классического градиентного
спуска. Параметрами модели являются только веса всех нейронов
сети:

δ
(n)
ij = −η

∂E
(
~y (n), ~t

)
∂w

(n)
ij

(3)

I η - скорость обучения (спуска, learning rate)
I ~y (n) - вектор выходов нейросети (выходы последнего слоя)
I ~t - ожидаемые выходы нейросети для текущего примера
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Градиентный спуск, #2

I
∂E

∂w
(n)
ij

=
∂E

∂z
(n)
j

∂z
(n)
j

∂w
(n)
ij

I
∂z

(n)
j

∂w
(n)
ij

=
∑

i

∂w
(n)
ij x

(n−1)
i

∂w
(n)
ij

= x
(n−1)
i

В итоге получим:
∂E

∂w
(n)
ij

= x
(n−1)
i

∂E

∂z
(n)
j

(4)
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Градиентный спуск, выходной слой

∂E

∂w
(n)
ij

= x
(n−1)
i

∂E

∂z
(n)
j

= x
(n−1)
i

∂E

∂y
(n)
j

∂y
(n)
j

∂z
(n)
j

(5)

Таким образом при условии дифференцируемости целевой функции
и функции активации, вычисление градиента любого из весов
выходного слоя становится легко решаемой задачей.
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Градиентный спуск, любой скрытый слой
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= x
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Паралич сети, эксперимент

input = 841 layer -5 layer -4 layer -3 layer -2 layer -1 output
neurons 100 100 100 100 100 26
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Backprop, прямой проход

I y
(n)
k = σ

(n)
k

(∑Nn−1

i=0 w
(n)
ij x

(n)
i

)
I выходные значения каждого нейрона

лежат в строго заданных пределах

Прямой проход в нейросети9

9https://class.coursera.org/neuralnets-2012-001/lecture
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Backprop, обратный проход, #1

Вспомним формулу градиента для скрытых слоев:

∂E

∂w
(n)
ij

= x
(n−1)
i

∑
k

w
(n+1)
ik

∂E

∂z
(n+1)
k

∂yn
j

∂znj

Выполнив замену δ(n)k = ∂E

∂z
(n+1)
k

, получим следующее:

∂E

∂w
(n)
ij

= x
(n−1)
i

∂yn
j

∂znj

∑
k

w
(n+1)
ik δ

(n)
k =

∑
k

ckδ
(n)
k

I в итоге получилась линейная функция от δ(n)k .

I δ
(n)
k - локальный градиент/ошибка нейрона (она как раз и
распространяется обратно)
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Backprop, обратный проход, #2

Рис.: Схема прямого (нелинейного) и обратного (линейного)
распространения сигнала в сети
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Backprop, затухание градиента, #1

Рассмотрим в качестве функции активации функцию логистического
сигмоида:

y(z) =
1

1 + e−z

∂y(z)

∂z
= y(z) · (1− y(z))

Построим график значений производной:

I максимум равен σmax = 0.25 = 1
4
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Backprop, затухание градиента, #2
Рассмотрим простую сеть:

Вычислим градиенты весов для E (~y , ~t) = 1
2

∑
j(yj − tj)

2:

∂E

∂w5
= y4(y5 − t)y5(1− y5) ≤ y4(y5 − t)

1

4
∂E

∂w4
= y3w5(y5 − t)y4(1− y4)y5(1− y5) ≤ y3w5(y5 − t)

1

42

∂E

∂w3
≤ y2w4w5(y5 − t)

1

43

∂E

∂w2
≤ y1w3w4w5(y5 − t)

1

44

∂E

∂w1
≤ xw2w3w4w5(y5 − t)

1

45
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Backprop, паралич сети, выводы

I значение градиента затухает экспоненциально в принципе ⇒
сходимость замедляется

I при малых значениях весов этот эффект усиливается
I при больших значения весов значение градиента может

экспоненциально возрастать ⇒ алгоритм расходится
I не глубокие сети не сильно страдают от этого
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Проблема паралича сети, визуализация

(a) Исходное изображение (b) Образ в первом скрытом слое

Рис.: Оригинал и его образ в первом скрытом слое нейронной сети при
количестве нейронов нем равном размерности входного образа при
инициализации весов wij ∼ N (0, 0.01)
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Обучение без учителя

When we’re learning to see, nobody’s telling us what the right answers
are — we just look. Every so often, your mother says “that’s a dog”, but
that’s very little information. You’d be lucky if you got a few bits of
information — even one bit per second — that way. The brain’s visual
system has 1014 neural connections. And you only live for 109 seconds.
So it’s no use learning one bit per second. You need more like 105 bits
per second. And there’s only one place you can get that much
information: from the input itself.10

10Geoffrey Hinton, 1996 (quoted in (Gorder 2006))
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Статистическая механика, #1
Представим некоторую физическую систему с множеством степеней
свободы, которая может находится в одном из множества состояний
с некоторой вероятностью, а каждому такому состоянию состоянию
соответствует некоторая энергия всей системы:

I pi ≥ 0 - вероятность состояния i
I
∑

i pi = 1
I Ei - энергия системы в состоянии i

Тогда вероятность состояния i будет описываться распределением
Больцмана-Гиббса, при условии термодинамического равновесия
между системой и окружающей средой:

pi =
1

Z
exp

(
− Ei

kB · T

)
(6)

где
I T - абсолютная температура (К)
I kB - константа Больцмана (Дж/К)

I Z =
∑

i exp
(
− Ei

kB ·T

)
- нормализирующая константа (partition

function, статсумма)
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Статистическая механика, #2

Два важных вывода:
1. состояния с низкой энергией имеют больше шансов возникнуть

чем состояния с высокой энергией;
2. при понижении температуры, чаще всего будут возникать

состояния из небольшого подмножества состояний с низкой
энергией.
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Нейросеть Хопфилда

I обратная связь
I пороговая функция активации

Такая сеть (рекуррентная нейронная
сеть) может находится как в стабильном
состоянии, осциллировать, или даже
проявлять признаки детерминированного
хаоса.
Хопфилд показал, что при симметричной
матрице весов, существует такая
функция энергии бинарных состояний
системы, что при симуляции система
эволюционирует в одно из
низко-энергетических состояний.
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Нейросеть Хопфилда, энергия системы, #1

E = −
∑
i

sibi −
∑
i<j

si sjwij (7)

I si - состояние нейрона i
I bi - смещение нейрона i
I wij - вес между нейроном i и j

Рис.: Поверхность описываемая энергией сети Хопфилда
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Нейросеть Хопфилда, энергия системы, #2

Рис.: Поверхность описываемая энергией сети Хопфилда, два стабильных
состояния11

11Neural Networks and Learning Machines (3rd Edition), Simon O. Haykin
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Нейросеть Хопфилда, как ассоциативная память

I a - нет образов в памяти
I b - два образа далеко друг от друга
I c - два образа накладываются друг на друга

Вместимость 0.15 · N на N нейронов.
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Машина Больцмана - стохастический генеративный
вариант сети Хопфилда

I энергия не изменилась: E = −
∑

i sibi −
∑

i<j si sjwij

I симметричная матрица весов wij = wji , но нет обратных связей:
wii = 0

I появились скрытые состояния (система ищет такую
конфигурацию скрытых состояний которая лучшим образом
описывает видимые состояния)

I ∀i : si ∈ {0, 1}
I стохастический нейрон 44 / 90



Стохастический нейрон
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Ограниченная машина Больцмана
I убираем температуру
I вводим ограничение на топологию
I еще аж в 1986 год, гармониум Поля Смоленски
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Виды RBM

В зависимости от априрного распределения ассоциированного с
видимым и скрытым слоями, различают несколько видов RBM:

I Bernoulli-Bernoulli (binary-binary)
I Gaussian-Bernoulli
I Gaussian-Gaussian
I Poisson-Bernoulli
I и т.д.

Бинарные (Bernoulli-Bernoulli, binary-binary) RBM играют важную
роль в глубоком обучении, по аналогии с выводом алгоритма
обучения для бинарной ограниченной машины Больцмана, можно
вывести аналогичные правила для остальных типов моделей.
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RBM, обозначения

I D = {~xi}i=1...N - множество данных;

I ~v , ~h - значения видимых и скрытых нейронов;
I ~a, ~b,W - смещения видимых и скрытых нейронов, и матрица

весов;
I n,m - количество видимых и скрытых нейронов;
I E (~v , ~h) = −

∑n
i=1 aivi −

∑m
j=1 bjhj −

∑n
i=1

∑m
j=1 wijvihj =

−~vT~a− ~hT~b − ~vTW ~b

I p(~v , ~h) = 1
Z e
−E(~v ,~h)

I Z =
∑N

r

∑M
t e−E(~v (r),~h(t))

I P(~v) =
∑M

t P(~v , ~h(t)) = 1
Z

∑M
t e−E(~v ,~h(t))

Далее значки вектора ~x будут опускаться для простоты.
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RBM, функция активации и независимость
Рассмотрим только для скрытого слоя:

P(hk = 1|v) =
e−E1

e−E1 + e−E0

=
1

1 + eE1−E0

=
1

1 + e−bk−
∑n

i viwik

= σ

(
bk +

n∑
i=1

viwik

)

P(h|v) =
m∏
j=1

P(hj |v)

P(v |h) =
n∏

i=1

P(vi |h)
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RBM, целевая функция

E (~v , ~h) = −
n∑

i=1

aivi −
m∑
j=1

bjhj −
n∑

i=1

m∑
j=1

wijvihj (8)

P(~v) =
1

Z

M∑
t

e−E(~v ,~h(t)) (9)

I максимизировать вероятность данных при заданной
генеративной модели
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RBM, дифференцирование P(v), #1

E (~v , ~h) = −
n∑

i=1

aivi −
m∑
j=1

bjhj −
n∑

i=1

m∑
j=1

wijvihj

∂E (v , h)

∂wij
= −vihj

∂E (v , h)

∂ai
= −vi

∂E (v , h)

∂bj
= −hj

∂e−E(v ,h)

∂wij
= vihje

−E(v ,h)

∂e−E(v ,h)

∂ai
= vie

−E(v ,h)

∂e−E(v ,h)

∂bj
= hje

−E(v ,h)
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RBM, дифференцирование P(v), #2

Z =
N∑
r

M∑
t

e−E(~v (r),~h(t))

∂Z

∂wij
=

N∑
r

M∑
t

v
(r)
i h

(t)
j e−E(v (r),h(t))

∂Z

∂ai
=

N∑
r

M∑
t

v
(r)
i e−E(v (r),h(t))

∂Z

∂bj
=

N∑
r

M∑
t

h
(t)
j e−E(v (r),h(t))
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RBM, дифференцирование P(v), #3

∂P
(
v (k)

)
∂wij

=
1

Z 2

(
Z

(
M∑
t

v
(k)
i h

(k)
j e−E(v (r),h(t))

)

−

(
M∑
t

e−E(v (r),h(t))

)(
N∑
r

M∑
t

v
(r)
i h

(t)
j e−E(v (r),h(t))

))
∂ lnP

(
v (k)

)
∂wij

=
1

P
(
v (k)

) ∂P (v (k)
)

∂wij
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RBM, дифференцирование P(v), #4

∂ lnP
(
v (k)

)
∂wij

=
M∑
t

v
(k)
i h

(t)
j P

(
h(t)|v (k)

)
−

N∑
r

M∑
t

v
(r)
i h

(t)
j P

(
h(t), v (k)

)
= M

[
v
(k)
i hj

]
data
−M [vihj ]model

∂ lnP
(
v (k)

)
∂ai

= v
(k)
i −M [vi ]model

∂ lnP
(
v (k)

)
∂bj

= M [hj ]data −M [hj ]model

54 / 90



RBM, правила обновления

∆wij = η
(
M
[
v
(k)
i hj

]
data
−M [vihj ]model

)
∆ai = η

(
v
(k)
i −M [vi ]model

)
∆bj = η

(
M [hj ]data −M [hj ]model

)
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Алгоритм Contrastive Divergence
I Цель: собрать достаточную статистику для оценки M[· · · ]data и

M[· · · ]model

Рис.: Процесс сбора достаточной статистики12

I ∆wij = η

(
M
[
v
(k)
i hj

](0)
−M [vihj ]

(∞)

)
I M [· · · ](0) - позитивная фаза

I M [· · · ](∞) - негативная фаза
12https://class.coursera.org/neuralnets-2012-001/lecture

56 / 90



Семплирование по Гиббсу

Семплирование по Гиббсу не требуется явно выраженное совместное
распределение, а нужны лишь условные вероятности для каждой
переменной, входящей в распределение. Алгоритм на каждом шаге
берет одну случайную величину и выбирает ее значение при условии
фиксированных остальных. Можно показать, что
последовательность получаемых значений образуют возвратную
цепь Маркова, устойчивое распределение которой является как раз
искомым совместным распределением.

I p0 =
∑M

t v
(k)
i h

(t)
j P

(
h(t)|v (k)

)
- это оценка реального

распределения основываясь на данных
I pk→∞ =

∑N
r

∑M
t v

(r)
i h

(t)
j P

(
h(t), v (r)

)
- оценка реального

распределения с помощью семплирования по Гиббсу, которое
несомненно когда то сойдется в реальному13

I
∂ lnP(v (k))

∂wij
= p0 − pk→∞ = 0

13http://www.ini.rub.de/data/documents/tns/masterthesis janmelchior.pdf
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Визуализация восстановленных образов
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Визуализация признаков, #1
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Визуализация признаков, #2

Рис.: Признаки на множестве рукописных цифр MNIST14

14http://deeplearning.net/
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Визуализация признаков, #3
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Визуализация признаков, #4

Рис.: RBM как базис15

15http://cs.stanford.edu/
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Регуляризация в RBM, #1

(a) RBM, no reg (b) RBM, L2 reg

Рис.: Иллюстрация эффекта регуляризации
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Регуляризация в RBM, #2

(a) RBM, L2 reg (b) RBM, L1 reg

Рис.: Иллюстрация эффекта регуляризации
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Критерий остановки

Рис.: Кроссвалидация
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Зачем нам глубокие сети?

Рис.: Глубокая нейронная сеть16

I Согласно стандартной модели зрительной коры головного
мозга17 считается, что каждый следующий нейронный слой
выучивает новый уровень абстракции данных 18 (например
штрихи, пятна, поверхности, объекты);

I мало того, было показано, что добавление нового слоя в модель
улучшает нижнюю вариационную границу логарифма
правдоподобия генеративной модели19.

16Из предентации Scale Deep Learning, Jeff Dean
17Hubel and Wiesel 1962; Serre et al. 2005; Ranzato et al. 2007
18Palmer 1999; Kandel et al. 2000
19Learning multiple layers of representation (G. Hinton, 2007)
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Решение проблемы паралича сети, идея
I А что если инициализировать веса таким образом, что бы образ

оригинального изображения в скрытом пространстве описывал
бы прообраз максимально точно?

I Именно это и делает ограниченная машина Больцмана
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Жадный алгоритм предобучения

Собственно алгоритм
1. последовательно натренировать каждую пару слоев в глубокой

сети (возможно кроме первого и второго скрытого слоя от
выходного слоя);

2. осуществить тонкую настройку весов, используя алгоритм
обратного распространения ошибки (fine turning).

Некоторые важные преимущества:
I скорость сходимости;
I качество (в смысле выбранной меры);
I возможно использовать не только размеченные образы для

обучения с учителем
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Deep directed network

Для сети с одним видимым слоем и тремя скрытыми функция
правдоподобия выглядит следующим образом:

p(h1, h2, h3, v |W ) =
∏
i

Ber
(
vi |σ

(
hT1 w0i

))
·
∏
j

Ber
(
h1j |σ

(
hT2 w1i

))
·

·
∏
k

Ber
(
h2k |σ

(
hT3 w2i

))
·
∏
l

Ber (h3l |w3l)
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Deep Boltzmann machine

Для сети с одним видимым слоем и тремя скрытыми функция
правдоподобия выглядит следующим образом:

p(h1, h2, h3, v |W ) =
1

Z
· exp

∑
ij

vihijw1ij+

+
∑
jk

h1jh2kw2jk +
∑
kl

h2kh3lw3kl


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Deep belief network

Для сети с одним видимым слоем и тремя скрытыми функция
правдоподобия выглядит следующим образом:

p(h1, h2, h3, v |W ) =
∏
i

Ber
(
vi |σ

(
hT1 w0i

))
·
∏
j

Ber
(
h1j |σ

(
hT2 w1i

))
·

· 1
Z

exp

(∑
kl

h2kh3lw3kl

)
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Autoencoder

Рис.: Архитектура автоассоциатора: при обучении стремятся получить
выходной вектор x’ наиболее близким к входному вектору x
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Deep autoencoder

Рис.: Semantic hashing20

20R. Salakhutdinov, G. Hinton
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Discriminative Restricted Boltzmann Machines

Рис.: Classification using Discriminative Restricted Boltzmann Machines21

21H. Larochelle, Y. Bengio
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Deep Discriminative Restricted Boltzmann Machines

Рис.: RBM for MNIST22

22G. Hinton
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Multimodal Deep Boltzmann Machine

Рис.: Image + Text 23,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

23Srivastava, Salakhutdinov, NIPS 2012
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Recurrent Neural Network

Рис.: RNN - это глубокая нейросеть с общими весами во времени 24

24Generating Text with Recurrent Neural Networks, Sutskever, Martens, Hinton
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Convolutional neural network

Рис.: LeNet for MNIST25

I lenet.gif

25Y. LeCunn
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Convolution Resticted Boltzmann Machine

Рис.: Convolution RBM 26

26Stacks of Convolutional Restricted Boltzmann Machines for Shift-Invariant
Feature Learning, Mohammad Norouzi, Mani Ranjbar, and Greg Mori
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Сжатие размерности пространства, PCA
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Сжатие размерности пространства, RBM

I rbm features*.png
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Learning Similarity Measures

Рис.: New similarities in practice 27,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

27Salakhutdinov and Hinton, AI and Statistics 2007
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Neurolinguistic model

Рис.: Deep generative model 28,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

28Hinton, Salakhutdinov, Science 2006 83 / 90
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Multimodal data, #1

Рис.: Images from text 29,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

29Ryan Kiros, 2014
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Multimodal data, #2

Рис.: Images from text 30,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

30Ryan Kiros, 2014
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Text from images

Рис.: Text Generated from Images
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/
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Natural language from image

Рис.: Natural Text Generated from Images
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/
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Multimodal Linguistic Regularities, #1

Рис.: Multimodal Linguistic Regularities 31,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

31Ryan Kiros, 2014 88 / 90
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Multimodal Linguistic Regularities, #2

Рис.: Multimodal Linguistic Regularities 32,
http://videolectures.net/kdd2014_salakhutdinov_deep_learning/

32Ryan Kiros, 2014 89 / 90
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